{"title":"关于具有初始真空的可压缩非牛顿流体的局部良好拟合的备注","authors":"Hind Al Baba, Bilal Al Taki, Amru Hussein","doi":"10.1007/s00021-024-00901-3","DOIUrl":null,"url":null,"abstract":"<div><p>We discuss in this short note the local-in-time strong well-posedness of the compressible Navier–Stokes system for non-Newtonian fluids on the three dimensional torus. We show that the result established recently by Kalousek, Mácha, and Nečasova in https://doi.org/10.1007/s00208-021-02301-8 can be extended to the case where vanishing density is allowed initially. Our proof builds on the framework developed by Cho, Choe, and Kim in https://doi.org/10.1016/j.matpur.2003.11.004 for compressible Navier–Stokes equations in the case of Newtonian fluids. To adapt their method, special attention is given to the elliptic regularity of a challenging nonlinear elliptic system. We show particular results in this direction, however, the main result of this paper is proven in the general case when elliptic <span>\\(W^{2,p}\\)</span>-regularity is imposed as an assumption. Also, we give a finite time blow-up criterion.</p></div>","PeriodicalId":649,"journal":{"name":"Journal of Mathematical Fluid Mechanics","volume":"26 4","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00021-024-00901-3.pdf","citationCount":"0","resultStr":"{\"title\":\"Remark on the Local Well-Posedness of Compressible Non-Newtonian Fluids with Initial Vacuum\",\"authors\":\"Hind Al Baba, Bilal Al Taki, Amru Hussein\",\"doi\":\"10.1007/s00021-024-00901-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We discuss in this short note the local-in-time strong well-posedness of the compressible Navier–Stokes system for non-Newtonian fluids on the three dimensional torus. We show that the result established recently by Kalousek, Mácha, and Nečasova in https://doi.org/10.1007/s00208-021-02301-8 can be extended to the case where vanishing density is allowed initially. Our proof builds on the framework developed by Cho, Choe, and Kim in https://doi.org/10.1016/j.matpur.2003.11.004 for compressible Navier–Stokes equations in the case of Newtonian fluids. To adapt their method, special attention is given to the elliptic regularity of a challenging nonlinear elliptic system. We show particular results in this direction, however, the main result of this paper is proven in the general case when elliptic <span>\\\\(W^{2,p}\\\\)</span>-regularity is imposed as an assumption. Also, we give a finite time blow-up criterion.</p></div>\",\"PeriodicalId\":649,\"journal\":{\"name\":\"Journal of Mathematical Fluid Mechanics\",\"volume\":\"26 4\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s00021-024-00901-3.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematical Fluid Mechanics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00021-024-00901-3\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Fluid Mechanics","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00021-024-00901-3","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Remark on the Local Well-Posedness of Compressible Non-Newtonian Fluids with Initial Vacuum
We discuss in this short note the local-in-time strong well-posedness of the compressible Navier–Stokes system for non-Newtonian fluids on the three dimensional torus. We show that the result established recently by Kalousek, Mácha, and Nečasova in https://doi.org/10.1007/s00208-021-02301-8 can be extended to the case where vanishing density is allowed initially. Our proof builds on the framework developed by Cho, Choe, and Kim in https://doi.org/10.1016/j.matpur.2003.11.004 for compressible Navier–Stokes equations in the case of Newtonian fluids. To adapt their method, special attention is given to the elliptic regularity of a challenging nonlinear elliptic system. We show particular results in this direction, however, the main result of this paper is proven in the general case when elliptic \(W^{2,p}\)-regularity is imposed as an assumption. Also, we give a finite time blow-up criterion.
期刊介绍:
The Journal of Mathematical Fluid Mechanics (JMFM)is a forum for the publication of high-quality peer-reviewed papers on the mathematical theory of fluid mechanics, with special regards to the Navier-Stokes equations. As an important part of that, the journal encourages papers dealing with mathematical aspects of computational theory, as well as with applications in science and engineering. The journal also publishes in related areas of mathematics that have a direct bearing on the mathematical theory of fluid mechanics. All papers will be characterized by originality and mathematical rigor. For a paper to be accepted, it is not enough that it contains original results. In fact, results should be highly relevant to the mathematical theory of fluid mechanics, and meet a wide readership.