计算机模拟数据显示的 N-乙酰天冬氨酰谷氨酸合成酶酶-底物复合物的结构和动力学特征

IF 0.7 Q4 CHEMISTRY, MULTIDISCIPLINARY
I. V. Polyakov, A. V. Krivitskaya, M. G. Khrenova
{"title":"计算机模拟数据显示的 N-乙酰天冬氨酰谷氨酸合成酶酶-底物复合物的结构和动力学特征","authors":"I. V. Polyakov,&nbsp;A. V. Krivitskaya,&nbsp;M. G. Khrenova","doi":"10.3103/S0027131424700238","DOIUrl":null,"url":null,"abstract":"<p><i>N</i>-Acetylaspartylglutamate (NAAG) is the most common dipeptide in brain cells, which is synthesized using the enzyme <i>N</i>-acetylaspartylglutamate synthase. In this study, we utilize bioinformatics methods to predict the protein structure based on the primary sequence of the coding gene, classical molecular dynamics to obtain a stable protein complex with <i>N</i>-acetylaspartate and glutamate ligands within the trajectory, and machine learning methods to analyze, describe, and select potential reactive and nonreactive conformations of the model system describing the enzyme–substrate complex. Molecular dynamics trajectories are obtained for a set of selected conformations within the framework of the method of combined quantum and classical molecular mechanics, and the active site of the protein–ligand complex and potential reaction mechanism are characterized.</p>","PeriodicalId":709,"journal":{"name":"Moscow University Chemistry Bulletin","volume":"79 4","pages":"239 - 245"},"PeriodicalIF":0.7000,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Structure and Dynamics of the Enzyme–Substrate Complex of N-Acetylaspartylglutamate Synthase According to the Computer Simulation Data\",\"authors\":\"I. V. Polyakov,&nbsp;A. V. Krivitskaya,&nbsp;M. G. Khrenova\",\"doi\":\"10.3103/S0027131424700238\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><i>N</i>-Acetylaspartylglutamate (NAAG) is the most common dipeptide in brain cells, which is synthesized using the enzyme <i>N</i>-acetylaspartylglutamate synthase. In this study, we utilize bioinformatics methods to predict the protein structure based on the primary sequence of the coding gene, classical molecular dynamics to obtain a stable protein complex with <i>N</i>-acetylaspartate and glutamate ligands within the trajectory, and machine learning methods to analyze, describe, and select potential reactive and nonreactive conformations of the model system describing the enzyme–substrate complex. Molecular dynamics trajectories are obtained for a set of selected conformations within the framework of the method of combined quantum and classical molecular mechanics, and the active site of the protein–ligand complex and potential reaction mechanism are characterized.</p>\",\"PeriodicalId\":709,\"journal\":{\"name\":\"Moscow University Chemistry Bulletin\",\"volume\":\"79 4\",\"pages\":\"239 - 245\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2024-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Moscow University Chemistry Bulletin\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.3103/S0027131424700238\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Moscow University Chemistry Bulletin","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.3103/S0027131424700238","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

N-乙酰天冬氨酰谷氨酸(NAAG)是脑细胞中最常见的二肽,由N-乙酰天冬氨酰谷氨酸合成酶合成。在这项研究中,我们利用生物信息学方法,根据编码基因的主序列预测蛋白质结构;利用经典分子动力学方法,在轨迹中获得与 N-乙酰天冬氨酸和谷氨酸配体的稳定蛋白质复合物;利用机器学习方法,分析、描述和选择描述酶-底物复合物的模型系统的潜在反应和非反应构象。在量子和经典分子力学相结合的方法框架内,获得了一组选定构象的分子动力学轨迹,并描述了蛋白质配体复合物的活性位点和潜在的反应机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

The Structure and Dynamics of the Enzyme–Substrate Complex of N-Acetylaspartylglutamate Synthase According to the Computer Simulation Data

The Structure and Dynamics of the Enzyme–Substrate Complex of N-Acetylaspartylglutamate Synthase According to the Computer Simulation Data

N-Acetylaspartylglutamate (NAAG) is the most common dipeptide in brain cells, which is synthesized using the enzyme N-acetylaspartylglutamate synthase. In this study, we utilize bioinformatics methods to predict the protein structure based on the primary sequence of the coding gene, classical molecular dynamics to obtain a stable protein complex with N-acetylaspartate and glutamate ligands within the trajectory, and machine learning methods to analyze, describe, and select potential reactive and nonreactive conformations of the model system describing the enzyme–substrate complex. Molecular dynamics trajectories are obtained for a set of selected conformations within the framework of the method of combined quantum and classical molecular mechanics, and the active site of the protein–ligand complex and potential reaction mechanism are characterized.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Moscow University Chemistry Bulletin
Moscow University Chemistry Bulletin CHEMISTRY, MULTIDISCIPLINARY-
CiteScore
1.30
自引率
14.30%
发文量
38
期刊介绍: Moscow University Chemistry Bulletin is a journal that publishes review articles, original research articles, and short communications on various areas of basic and applied research in chemistry, including medical chemistry and pharmacology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信