Xiaoli Wang, Linyu Du, Boshun Zhang, Yingchun Li, Zheying Tao, Li Zhang, Jieming Qu, Johnjoe McFadden, Hongping Qu, Jiao Yang, Jialin Liu
{"title":"基于水凝胶的同时测定头孢他啶和阿维菌素的荧光检测试剂盒","authors":"Xiaoli Wang, Linyu Du, Boshun Zhang, Yingchun Li, Zheying Tao, Li Zhang, Jieming Qu, Johnjoe McFadden, Hongping Qu, Jiao Yang, Jialin Liu","doi":"10.1007/s00604-024-06742-1","DOIUrl":null,"url":null,"abstract":"<div><p>Monitoring the concentration of antibiotics rapidly and cost-effectively is crucial for accurate clinical medication and timely identification of drug-induced illnesses. Here, we constructed a novel fluorescent assay kit to monitor Zavicefta, an effective antibiotic composed of avibactam (AVI) and ceftazidime (CFZ) to treat carbapenem-resistant gram-negative bacteria infections. AVI can emit fluorescence, but CFZ cannot. To enable simultaneous measurement of both in one kit, we designed molecularly imprinted polymer (MIP) modified quantum dots (QDs) for CFZ determination. MIPs have received significant attention as an artificial antibody due to their exceptional specificity for various targets, particularly drugs with small molecular weight. Under the excitation wavelength of 350 nm, the detection process involves a decrease in QDs’ fluorescence signal at 600 nm owing to the “gate effect” between MIP and CFZ and the internal filtration effect between CFZ and QDs. Simultaneously, a fluorescence emission characteristic peak at 420 nm for AVI emerges. In addition, to simplify the operation procedure and improve determination throughput, the detection agents were incorporated into a hydrogel and placed in a 96-well plate, enabling concurrent quantification of AVI and CFZ within the respective range of 80–1000 μM and 1–1000 μM. The developed assay kit successfully determined AVI and CFZ in human serums and therapeutic drug monitoring in a live rabbit model. Recoveries of AVI and CFZ were 92.7–114%, with relative standard deviations below 6.0%. Moreover, a smartphone was employed to read the fluorescence signals, which was beneficial for cost reduction and out-of-lab analysis. This study will deliver a pragmatic resolution to developing high-throughput assay kits for drug determination.</p><h3>Graphical Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":705,"journal":{"name":"Microchimica Acta","volume":"191 11","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00604-024-06742-1.pdf","citationCount":"0","resultStr":"{\"title\":\"Hydrogel-based fluorescence assay kit for simultaneous determination of ceftazidime and avibactam\",\"authors\":\"Xiaoli Wang, Linyu Du, Boshun Zhang, Yingchun Li, Zheying Tao, Li Zhang, Jieming Qu, Johnjoe McFadden, Hongping Qu, Jiao Yang, Jialin Liu\",\"doi\":\"10.1007/s00604-024-06742-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Monitoring the concentration of antibiotics rapidly and cost-effectively is crucial for accurate clinical medication and timely identification of drug-induced illnesses. Here, we constructed a novel fluorescent assay kit to monitor Zavicefta, an effective antibiotic composed of avibactam (AVI) and ceftazidime (CFZ) to treat carbapenem-resistant gram-negative bacteria infections. AVI can emit fluorescence, but CFZ cannot. To enable simultaneous measurement of both in one kit, we designed molecularly imprinted polymer (MIP) modified quantum dots (QDs) for CFZ determination. MIPs have received significant attention as an artificial antibody due to their exceptional specificity for various targets, particularly drugs with small molecular weight. Under the excitation wavelength of 350 nm, the detection process involves a decrease in QDs’ fluorescence signal at 600 nm owing to the “gate effect” between MIP and CFZ and the internal filtration effect between CFZ and QDs. Simultaneously, a fluorescence emission characteristic peak at 420 nm for AVI emerges. In addition, to simplify the operation procedure and improve determination throughput, the detection agents were incorporated into a hydrogel and placed in a 96-well plate, enabling concurrent quantification of AVI and CFZ within the respective range of 80–1000 μM and 1–1000 μM. The developed assay kit successfully determined AVI and CFZ in human serums and therapeutic drug monitoring in a live rabbit model. Recoveries of AVI and CFZ were 92.7–114%, with relative standard deviations below 6.0%. Moreover, a smartphone was employed to read the fluorescence signals, which was beneficial for cost reduction and out-of-lab analysis. This study will deliver a pragmatic resolution to developing high-throughput assay kits for drug determination.</p><h3>Graphical Abstract</h3>\\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":705,\"journal\":{\"name\":\"Microchimica Acta\",\"volume\":\"191 11\",\"pages\":\"\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s00604-024-06742-1.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microchimica Acta\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00604-024-06742-1\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microchimica Acta","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s00604-024-06742-1","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
Hydrogel-based fluorescence assay kit for simultaneous determination of ceftazidime and avibactam
Monitoring the concentration of antibiotics rapidly and cost-effectively is crucial for accurate clinical medication and timely identification of drug-induced illnesses. Here, we constructed a novel fluorescent assay kit to monitor Zavicefta, an effective antibiotic composed of avibactam (AVI) and ceftazidime (CFZ) to treat carbapenem-resistant gram-negative bacteria infections. AVI can emit fluorescence, but CFZ cannot. To enable simultaneous measurement of both in one kit, we designed molecularly imprinted polymer (MIP) modified quantum dots (QDs) for CFZ determination. MIPs have received significant attention as an artificial antibody due to their exceptional specificity for various targets, particularly drugs with small molecular weight. Under the excitation wavelength of 350 nm, the detection process involves a decrease in QDs’ fluorescence signal at 600 nm owing to the “gate effect” between MIP and CFZ and the internal filtration effect between CFZ and QDs. Simultaneously, a fluorescence emission characteristic peak at 420 nm for AVI emerges. In addition, to simplify the operation procedure and improve determination throughput, the detection agents were incorporated into a hydrogel and placed in a 96-well plate, enabling concurrent quantification of AVI and CFZ within the respective range of 80–1000 μM and 1–1000 μM. The developed assay kit successfully determined AVI and CFZ in human serums and therapeutic drug monitoring in a live rabbit model. Recoveries of AVI and CFZ were 92.7–114%, with relative standard deviations below 6.0%. Moreover, a smartphone was employed to read the fluorescence signals, which was beneficial for cost reduction and out-of-lab analysis. This study will deliver a pragmatic resolution to developing high-throughput assay kits for drug determination.
期刊介绍:
As a peer-reviewed journal for analytical sciences and technologies on the micro- and nanoscale, Microchimica Acta has established itself as a premier forum for truly novel approaches in chemical and biochemical analysis. Coverage includes methods and devices that provide expedient solutions to the most contemporary demands in this area. Examples are point-of-care technologies, wearable (bio)sensors, in-vivo-monitoring, micro/nanomotors and materials based on synthetic biology as well as biomedical imaging and targeting.