{"title":"基于观测器的自适应模糊控制,用于具有非线性扰动和致动器饱和的奇异系统","authors":"Qingtan Meng;Qian Ma","doi":"10.1109/TAI.2024.3429052","DOIUrl":null,"url":null,"abstract":"This article investigates the adaptive fuzzy control problem for singular systems with actuator saturation and nonlinear perturbation, where the system consists of two coupled differential and algebraic subsystems. To cope with the actuator saturation, a new auxiliary system whose order is the same as the differential subsystem is introduced. With the help of the backstepping method and adaptive fuzzy control method, an observer-based adaptive output feedback tracking control approach is utilized. Under the designed controller, it is proved that the closed-loop system is impulse-free and regular, and all the involved signals are bounded. Furthermore, it is ensured that the tracking error can be adjusted by the errors between the control inputs and the corresponding saturated inputs, as well as the design parameters. Finally, simulation studies demonstrate the validity of the control approach.","PeriodicalId":73305,"journal":{"name":"IEEE transactions on artificial intelligence","volume":"5 10","pages":"5090-5099"},"PeriodicalIF":0.0000,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Observer-Based Adaptive Fuzzy Control for Singular Systems with Nonlinear Perturbation and Actuator Saturation\",\"authors\":\"Qingtan Meng;Qian Ma\",\"doi\":\"10.1109/TAI.2024.3429052\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article investigates the adaptive fuzzy control problem for singular systems with actuator saturation and nonlinear perturbation, where the system consists of two coupled differential and algebraic subsystems. To cope with the actuator saturation, a new auxiliary system whose order is the same as the differential subsystem is introduced. With the help of the backstepping method and adaptive fuzzy control method, an observer-based adaptive output feedback tracking control approach is utilized. Under the designed controller, it is proved that the closed-loop system is impulse-free and regular, and all the involved signals are bounded. Furthermore, it is ensured that the tracking error can be adjusted by the errors between the control inputs and the corresponding saturated inputs, as well as the design parameters. Finally, simulation studies demonstrate the validity of the control approach.\",\"PeriodicalId\":73305,\"journal\":{\"name\":\"IEEE transactions on artificial intelligence\",\"volume\":\"5 10\",\"pages\":\"5090-5099\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE transactions on artificial intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10599630/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on artificial intelligence","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10599630/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Observer-Based Adaptive Fuzzy Control for Singular Systems with Nonlinear Perturbation and Actuator Saturation
This article investigates the adaptive fuzzy control problem for singular systems with actuator saturation and nonlinear perturbation, where the system consists of two coupled differential and algebraic subsystems. To cope with the actuator saturation, a new auxiliary system whose order is the same as the differential subsystem is introduced. With the help of the backstepping method and adaptive fuzzy control method, an observer-based adaptive output feedback tracking control approach is utilized. Under the designed controller, it is proved that the closed-loop system is impulse-free and regular, and all the involved signals are bounded. Furthermore, it is ensured that the tracking error can be adjusted by the errors between the control inputs and the corresponding saturated inputs, as well as the design parameters. Finally, simulation studies demonstrate the validity of the control approach.