两人零和马尔可夫博弈的ϵ-最优策略设计

IF 2.4 Q2 AUTOMATION & CONTROL SYSTEMS
Kaiyun Xie;Junlin Xiong
{"title":"两人零和马尔可夫博弈的ϵ-最优策略设计","authors":"Kaiyun Xie;Junlin Xiong","doi":"10.1109/LCSYS.2024.3474057","DOIUrl":null,"url":null,"abstract":"This letter focuses on designing approximate Nash strategies for the two-person zero-sum Markov game. Using the receding horizon method, the \n<inline-formula> <tex-math>$\\epsilon $ </tex-math></inline-formula>\n-optimal strategies are designed to approximate Nash strategies by executing finite Gauss-Seidel iterations. The relationship between the approximation value of \n<inline-formula> <tex-math>$\\epsilon $ </tex-math></inline-formula>\n and the number of iterations is also analyzed. Additionally, the \n<inline-formula> <tex-math>$\\epsilon $ </tex-math></inline-formula>\n-optimal strategies are designed for two scenarios with imprecise parameters. For scenarios with imprecise values, the value of \n<inline-formula> <tex-math>$\\epsilon $ </tex-math></inline-formula>\n is determined based on the errors between imprecise and iteration values. It provides a theoretical basis for efficiently designing \n<inline-formula> <tex-math>$\\epsilon $ </tex-math></inline-formula>\n-optimal strategies using heuristic algorithms or approximate dynamic programming. For scenarios with imprecise transition probabilities, the value of \n<inline-formula> <tex-math>$\\epsilon $ </tex-math></inline-formula>\n is determined based on the errors between the estimated and practical transition probabilities. It enables the use of pattern recognition technology or other methods to estimate practical transition probabilities for designing \n<inline-formula> <tex-math>$\\epsilon $ </tex-math></inline-formula>\n-optimal strategies.","PeriodicalId":37235,"journal":{"name":"IEEE Control Systems Letters","volume":"8 ","pages":"2349-2354"},"PeriodicalIF":2.4000,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Design of ϵ-Optimal Strategy for Two-Person Zero-Sum Markov Games\",\"authors\":\"Kaiyun Xie;Junlin Xiong\",\"doi\":\"10.1109/LCSYS.2024.3474057\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This letter focuses on designing approximate Nash strategies for the two-person zero-sum Markov game. Using the receding horizon method, the \\n<inline-formula> <tex-math>$\\\\epsilon $ </tex-math></inline-formula>\\n-optimal strategies are designed to approximate Nash strategies by executing finite Gauss-Seidel iterations. The relationship between the approximation value of \\n<inline-formula> <tex-math>$\\\\epsilon $ </tex-math></inline-formula>\\n and the number of iterations is also analyzed. Additionally, the \\n<inline-formula> <tex-math>$\\\\epsilon $ </tex-math></inline-formula>\\n-optimal strategies are designed for two scenarios with imprecise parameters. For scenarios with imprecise values, the value of \\n<inline-formula> <tex-math>$\\\\epsilon $ </tex-math></inline-formula>\\n is determined based on the errors between imprecise and iteration values. It provides a theoretical basis for efficiently designing \\n<inline-formula> <tex-math>$\\\\epsilon $ </tex-math></inline-formula>\\n-optimal strategies using heuristic algorithms or approximate dynamic programming. For scenarios with imprecise transition probabilities, the value of \\n<inline-formula> <tex-math>$\\\\epsilon $ </tex-math></inline-formula>\\n is determined based on the errors between the estimated and practical transition probabilities. It enables the use of pattern recognition technology or other methods to estimate practical transition probabilities for designing \\n<inline-formula> <tex-math>$\\\\epsilon $ </tex-math></inline-formula>\\n-optimal strategies.\",\"PeriodicalId\":37235,\"journal\":{\"name\":\"IEEE Control Systems Letters\",\"volume\":\"8 \",\"pages\":\"2349-2354\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-10-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Control Systems Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10705104/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Control Systems Letters","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10705104/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

这封信的重点是设计两人零和马尔可夫博弈的近似纳什策略。利用后退视界法,通过执行有限的高斯-赛德尔迭代,设计了$epsilon $最优策略来近似纳什策略。同时还分析了 $\epsilon $ 的近似值与迭代次数之间的关系。此外,还针对两种参数不精确的情况设计了$\epsilon $最优策略。对于参数值不精确的情况,$epsilon $ 的值是根据不精确值和迭代值之间的误差确定的。它为使用启发式算法或近似动态编程有效设计 $\epsilon $ 最佳策略提供了理论基础。对于过渡概率不精确的情况,$epsilon $ 的值是根据估计过渡概率和实际过渡概率之间的误差来确定的。它可以使用模式识别技术或其他方法来估计实际过渡概率,从而设计出最优策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Design of ϵ-Optimal Strategy for Two-Person Zero-Sum Markov Games
This letter focuses on designing approximate Nash strategies for the two-person zero-sum Markov game. Using the receding horizon method, the $\epsilon $ -optimal strategies are designed to approximate Nash strategies by executing finite Gauss-Seidel iterations. The relationship between the approximation value of $\epsilon $ and the number of iterations is also analyzed. Additionally, the $\epsilon $ -optimal strategies are designed for two scenarios with imprecise parameters. For scenarios with imprecise values, the value of $\epsilon $ is determined based on the errors between imprecise and iteration values. It provides a theoretical basis for efficiently designing $\epsilon $ -optimal strategies using heuristic algorithms or approximate dynamic programming. For scenarios with imprecise transition probabilities, the value of $\epsilon $ is determined based on the errors between the estimated and practical transition probabilities. It enables the use of pattern recognition technology or other methods to estimate practical transition probabilities for designing $\epsilon $ -optimal strategies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Control Systems Letters
IEEE Control Systems Letters Mathematics-Control and Optimization
CiteScore
4.40
自引率
13.30%
发文量
471
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信