利用水合物技术同时处理和富集牲畜污水中的总磷

IF 6.3 2区 工程技术 Q1 ENGINEERING, CHEMICAL
Quang Nhat Tran , Thao Thanh Thuy Le , Nguyen Huu Ke , Hai Son Truong-Lam
{"title":"利用水合物技术同时处理和富集牲畜污水中的总磷","authors":"Quang Nhat Tran ,&nbsp;Thao Thanh Thuy Le ,&nbsp;Nguyen Huu Ke ,&nbsp;Hai Son Truong-Lam","doi":"10.1016/j.jwpe.2024.106353","DOIUrl":null,"url":null,"abstract":"<div><div>The presence of phosphorus in livestock sewage is a key factor that causes eutrophication and the degradation of ecological water quality. Cyclopentane (CP) hydrate-based water treatment technique was utilized for the efficient total removal of phosphorus in effluents. This study assesses the treatment effectiveness and enrichment potential of hydrate technology when applied to real-world samples, specifically livestock wastewater. The treatment process was applied under atmospheric pressure and optimized appropriate conditions comprising the CP-to-sample volume ratio of 1:4, reaction duration of 3 h, and temperature of 2 °C because of the high subcooling and ability to enhance the number of hydrate crystals formed along with water. In addition, various methods, such as vacuum filtration, cold centrifugation, and washing, were employed for the effective and comprehensive removal of phosphorus from water samples with the efficiency exhibited from approximately 30 % to 80 %. The structure and composition of the CPHs formed in wastewater were analyzed via Raman spectroscopy and the phosphorus content was determined according to ISO 6878:2004. After a single-stage hydrate process without pretreatment and posttreatment, the water recovered from the extracted hydrates showed that the phosphorus removal efficiency in livestock sewage was approximately 85 % with a remarkable water recovery above 25 %. The study findings provide insights into the development of hydrate-based treatment technology for the removal of phosphorus and explore opportunities for resource enrichment and recovery from sewage.</div></div>","PeriodicalId":17528,"journal":{"name":"Journal of water process engineering","volume":"68 ","pages":"Article 106353"},"PeriodicalIF":6.3000,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Simultaneous treatment and enrichment of total phosphorus from livestock sewage using hydrate technology\",\"authors\":\"Quang Nhat Tran ,&nbsp;Thao Thanh Thuy Le ,&nbsp;Nguyen Huu Ke ,&nbsp;Hai Son Truong-Lam\",\"doi\":\"10.1016/j.jwpe.2024.106353\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The presence of phosphorus in livestock sewage is a key factor that causes eutrophication and the degradation of ecological water quality. Cyclopentane (CP) hydrate-based water treatment technique was utilized for the efficient total removal of phosphorus in effluents. This study assesses the treatment effectiveness and enrichment potential of hydrate technology when applied to real-world samples, specifically livestock wastewater. The treatment process was applied under atmospheric pressure and optimized appropriate conditions comprising the CP-to-sample volume ratio of 1:4, reaction duration of 3 h, and temperature of 2 °C because of the high subcooling and ability to enhance the number of hydrate crystals formed along with water. In addition, various methods, such as vacuum filtration, cold centrifugation, and washing, were employed for the effective and comprehensive removal of phosphorus from water samples with the efficiency exhibited from approximately 30 % to 80 %. The structure and composition of the CPHs formed in wastewater were analyzed via Raman spectroscopy and the phosphorus content was determined according to ISO 6878:2004. After a single-stage hydrate process without pretreatment and posttreatment, the water recovered from the extracted hydrates showed that the phosphorus removal efficiency in livestock sewage was approximately 85 % with a remarkable water recovery above 25 %. The study findings provide insights into the development of hydrate-based treatment technology for the removal of phosphorus and explore opportunities for resource enrichment and recovery from sewage.</div></div>\",\"PeriodicalId\":17528,\"journal\":{\"name\":\"Journal of water process engineering\",\"volume\":\"68 \",\"pages\":\"Article 106353\"},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2024-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of water process engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S221471442401585X\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of water process engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S221471442401585X","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要

畜牧业污水中磷的存在是导致富营养化和生态水质恶化的关键因素。环戊烷(CP)水合物水处理技术可用于高效去除污水中的全部磷。本研究评估了水合物技术应用于实际样品(特别是畜牧业废水)时的处理效果和富集潜力。处理过程在常压下进行,并优化了适当的条件,包括氯化石蜡与样品的体积比为 1:4、反应持续时间为 3 小时、温度为 2 °C,因为过冷度高,能够增加与水一起形成的水合物晶体的数量。此外,还采用了真空过滤、冷离心和洗涤等多种方法,以有效、全面地去除水样中的磷,效率约为 30% 至 80%。通过拉曼光谱分析了废水中形成的 CPH 的结构和成分,并根据 ISO 6878:2004 测定了磷含量。在未经预处理和后处理的单级水合物工艺之后,从提取的水合物中回收的水表明,畜牧业污水的除磷效率约为 85%,水回收率显著高于 25%。研究结果为开发基于水合物的除磷处理技术提供了启示,并为从污水中富集和回收资源提供了机会。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Simultaneous treatment and enrichment of total phosphorus from livestock sewage using hydrate technology
The presence of phosphorus in livestock sewage is a key factor that causes eutrophication and the degradation of ecological water quality. Cyclopentane (CP) hydrate-based water treatment technique was utilized for the efficient total removal of phosphorus in effluents. This study assesses the treatment effectiveness and enrichment potential of hydrate technology when applied to real-world samples, specifically livestock wastewater. The treatment process was applied under atmospheric pressure and optimized appropriate conditions comprising the CP-to-sample volume ratio of 1:4, reaction duration of 3 h, and temperature of 2 °C because of the high subcooling and ability to enhance the number of hydrate crystals formed along with water. In addition, various methods, such as vacuum filtration, cold centrifugation, and washing, were employed for the effective and comprehensive removal of phosphorus from water samples with the efficiency exhibited from approximately 30 % to 80 %. The structure and composition of the CPHs formed in wastewater were analyzed via Raman spectroscopy and the phosphorus content was determined according to ISO 6878:2004. After a single-stage hydrate process without pretreatment and posttreatment, the water recovered from the extracted hydrates showed that the phosphorus removal efficiency in livestock sewage was approximately 85 % with a remarkable water recovery above 25 %. The study findings provide insights into the development of hydrate-based treatment technology for the removal of phosphorus and explore opportunities for resource enrichment and recovery from sewage.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of water process engineering
Journal of water process engineering Biochemistry, Genetics and Molecular Biology-Biotechnology
CiteScore
10.70
自引率
8.60%
发文量
846
审稿时长
24 days
期刊介绍: The Journal of Water Process Engineering aims to publish refereed, high-quality research papers with significant novelty and impact in all areas of the engineering of water and wastewater processing . Papers on advanced and novel treatment processes and technologies are particularly welcome. The Journal considers papers in areas such as nanotechnology and biotechnology applications in water, novel oxidation and separation processes, membrane processes (except those for desalination) , catalytic processes for the removal of water contaminants, sustainable processes, water reuse and recycling, water use and wastewater minimization, integrated/hybrid technology, process modeling of water treatment and novel treatment processes. Submissions on the subject of adsorbents, including standard measurements of adsorption kinetics and equilibrium will only be considered if there is a genuine case for novelty and contribution, for example highly novel, sustainable adsorbents and their use: papers on activated carbon-type materials derived from natural matter, or surfactant-modified clays and related minerals, would not fulfil this criterion. The Journal particularly welcomes contributions involving environmentally, economically and socially sustainable technology for water treatment, including those which are energy-efficient, with minimal or no chemical consumption, and capable of water recycling and reuse that minimizes the direct disposal of wastewater to the aquatic environment. Papers that describe novel ideas for solving issues related to water quality and availability are also welcome, as are those that show the transfer of techniques from other disciplines. The Journal will consider papers dealing with processes for various water matrices including drinking water (except desalination), domestic, urban and industrial wastewaters, in addition to their residues. It is expected that the journal will be of particular relevance to chemical and process engineers working in the field. The Journal welcomes Full Text papers, Short Communications, State-of-the-Art Reviews and Letters to Editors and Case Studies
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信