采用混合有机小分子材料作为可饱和吸收体的飞秒光纤激光器

IF 2.6 3区 计算机科学 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Sameer Salam , Salam M. Azooz , Irfan Anjum Badruddin , Sarfaraz Kamangar , Sulaiman Wadi Harun
{"title":"采用混合有机小分子材料作为可饱和吸收体的飞秒光纤激光器","authors":"Sameer Salam ,&nbsp;Salam M. Azooz ,&nbsp;Irfan Anjum Badruddin ,&nbsp;Sarfaraz Kamangar ,&nbsp;Sulaiman Wadi Harun","doi":"10.1016/j.yofte.2024.104006","DOIUrl":null,"url":null,"abstract":"<div><div>This study presents the development of an ultrafast mode-locked fiber laser utilizing a hybrid organic small molecule (HOSM) based on Tris-(8-hydroxyquinoline) aluminum (Alq<sub>3</sub>) and N,N′-Di(1-naphthyl)-N,N′-diphenyl-(1,1′-biphenyl)-4,4′-diamine (NPB), as a passive saturable absorber (SA). The SA thin-film was integrated into the laser cavity to serve as a mode-locker. Through a series of experiments varying the cavity length, the efficacy and stability of the developed SA were examined. In these experiments, with cavity lengths of 112 m, 61.5 m, and 22.5 m, accompanied by group velocity dispersions (GVDs) of −2.365, −1.249 ps<sup>2</sup>, and −0.4 ps<sup>2</sup> respectively, we observed a consistent and singular soliton mode-locking state. Notably, we achieved a remarkable pulse width tunability ranging from 1.98 ps to 712 fs by adjusting the cavity length. Operating in the 1560 nm region, this femtosecond soliton fiber laser holds significant promise for various applications, including high-precision optical metrology, frequency-comb generation, and broadband absorption spectroscopy.</div></div>","PeriodicalId":19663,"journal":{"name":"Optical Fiber Technology","volume":"88 ","pages":"Article 104006"},"PeriodicalIF":2.6000,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Femtosecond fiber laser with hybrid organic small molecule material as saturable absorber\",\"authors\":\"Sameer Salam ,&nbsp;Salam M. Azooz ,&nbsp;Irfan Anjum Badruddin ,&nbsp;Sarfaraz Kamangar ,&nbsp;Sulaiman Wadi Harun\",\"doi\":\"10.1016/j.yofte.2024.104006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study presents the development of an ultrafast mode-locked fiber laser utilizing a hybrid organic small molecule (HOSM) based on Tris-(8-hydroxyquinoline) aluminum (Alq<sub>3</sub>) and N,N′-Di(1-naphthyl)-N,N′-diphenyl-(1,1′-biphenyl)-4,4′-diamine (NPB), as a passive saturable absorber (SA). The SA thin-film was integrated into the laser cavity to serve as a mode-locker. Through a series of experiments varying the cavity length, the efficacy and stability of the developed SA were examined. In these experiments, with cavity lengths of 112 m, 61.5 m, and 22.5 m, accompanied by group velocity dispersions (GVDs) of −2.365, −1.249 ps<sup>2</sup>, and −0.4 ps<sup>2</sup> respectively, we observed a consistent and singular soliton mode-locking state. Notably, we achieved a remarkable pulse width tunability ranging from 1.98 ps to 712 fs by adjusting the cavity length. Operating in the 1560 nm region, this femtosecond soliton fiber laser holds significant promise for various applications, including high-precision optical metrology, frequency-comb generation, and broadband absorption spectroscopy.</div></div>\",\"PeriodicalId\":19663,\"journal\":{\"name\":\"Optical Fiber Technology\",\"volume\":\"88 \",\"pages\":\"Article 104006\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optical Fiber Technology\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1068520024003511\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optical Fiber Technology","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1068520024003511","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

本研究介绍了一种超快锁模光纤激光器的开发过程,该激光器采用了一种基于三-(8-羟基喹啉)铝(Alq3)和 N,N′-二(1-萘基)-N,N′-二苯基-(1,1′-联苯)-4,4′-二胺(NPB)的混合有机小分子(HOSM)作为被动可饱和吸收体(SA)。SA 薄膜被集成到激光腔中作为锁模器。通过一系列改变腔长的实验,检验了所开发的 SA 的功效和稳定性。在这些实验中,腔长分别为 112 m、61.5 m 和 22.5 m,群速度色散(GVD)分别为 -2.365、-1.249 ps2 和 -0.4ps2,我们观察到了一致的奇异孤子锁模态。值得注意的是,通过调节腔长,我们实现了从 1.98 ps 到 712 fs 的显著脉冲宽度可调性。这种飞秒孤子光纤激光器工作在 1560 nm 波段,在高精度光学计量、频率梳生成和宽带吸收光谱学等各种应用中大有可为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Femtosecond fiber laser with hybrid organic small molecule material as saturable absorber
This study presents the development of an ultrafast mode-locked fiber laser utilizing a hybrid organic small molecule (HOSM) based on Tris-(8-hydroxyquinoline) aluminum (Alq3) and N,N′-Di(1-naphthyl)-N,N′-diphenyl-(1,1′-biphenyl)-4,4′-diamine (NPB), as a passive saturable absorber (SA). The SA thin-film was integrated into the laser cavity to serve as a mode-locker. Through a series of experiments varying the cavity length, the efficacy and stability of the developed SA were examined. In these experiments, with cavity lengths of 112 m, 61.5 m, and 22.5 m, accompanied by group velocity dispersions (GVDs) of −2.365, −1.249 ps2, and −0.4 ps2 respectively, we observed a consistent and singular soliton mode-locking state. Notably, we achieved a remarkable pulse width tunability ranging from 1.98 ps to 712 fs by adjusting the cavity length. Operating in the 1560 nm region, this femtosecond soliton fiber laser holds significant promise for various applications, including high-precision optical metrology, frequency-comb generation, and broadband absorption spectroscopy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Optical Fiber Technology
Optical Fiber Technology 工程技术-电信学
CiteScore
4.80
自引率
11.10%
发文量
327
审稿时长
63 days
期刊介绍: Innovations in optical fiber technology are revolutionizing world communications. Newly developed fiber amplifiers allow for direct transmission of high-speed signals over transcontinental distances without the need for electronic regeneration. Optical fibers find new applications in data processing. The impact of fiber materials, devices, and systems on communications in the coming decades will create an abundance of primary literature and the need for up-to-date reviews. Optical Fiber Technology: Materials, Devices, and Systems is a new cutting-edge journal designed to fill a need in this rapidly evolving field for speedy publication of regular length papers. Both theoretical and experimental papers on fiber materials, devices, and system performance evaluation and measurements are eligible, with emphasis on practical applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信