{"title":"通过聚光光伏热发电机-固体氧化物电解槽系统进行全光谱太阳能水分解制氢","authors":"Heng Pan , Shaoqi Wang , Yuhao Zhao , Youjun Lu","doi":"10.1016/j.enconman.2024.119158","DOIUrl":null,"url":null,"abstract":"<div><div>This study introduces a novel solar-powered concentrating photovoltaic-thermal power generator-solid oxide electrolysis cell system designed to enhance hydrogen production efficiency by optimizing both electrical and thermal energy utilization. The system incorporates a thermal power generator to convert excess high-temperature thermal energy into electrical energy, addressing energy losses associated with high-temperature water electrolysis. Thermodynamic analysis shows that the integration of the thermal power generator improves energy and exergy efficiencies to 0.60 and 0.52, while lowering the optimal operating temperature to 1173 K. The system’s efficiency is sensitive to the proportion of electrical energy supplied by the thermal power generator, with an optimal range identified between 0.1 and 0.2. Higher temperatures improve hydrogen production and efficiency, but increased voltage negatively impacts thermodynamic efficiency. These findings demonstrate that the proposed system offers substantial improvements over conventional solar hydrogen production methods, making it a promising candidate for sustainable hydrogen production. Further research will focus on system integration, material costs, and scalability for commercial use.</div></div>","PeriodicalId":11664,"journal":{"name":"Energy Conversion and Management","volume":"322 ","pages":""},"PeriodicalIF":9.9000,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Full-spectrum solar water decomposition for hydrogen production via a concentrating photovoltaic-thermal power generator-solid oxide electrolysis cell system\",\"authors\":\"Heng Pan , Shaoqi Wang , Yuhao Zhao , Youjun Lu\",\"doi\":\"10.1016/j.enconman.2024.119158\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study introduces a novel solar-powered concentrating photovoltaic-thermal power generator-solid oxide electrolysis cell system designed to enhance hydrogen production efficiency by optimizing both electrical and thermal energy utilization. The system incorporates a thermal power generator to convert excess high-temperature thermal energy into electrical energy, addressing energy losses associated with high-temperature water electrolysis. Thermodynamic analysis shows that the integration of the thermal power generator improves energy and exergy efficiencies to 0.60 and 0.52, while lowering the optimal operating temperature to 1173 K. The system’s efficiency is sensitive to the proportion of electrical energy supplied by the thermal power generator, with an optimal range identified between 0.1 and 0.2. Higher temperatures improve hydrogen production and efficiency, but increased voltage negatively impacts thermodynamic efficiency. These findings demonstrate that the proposed system offers substantial improvements over conventional solar hydrogen production methods, making it a promising candidate for sustainable hydrogen production. Further research will focus on system integration, material costs, and scalability for commercial use.</div></div>\",\"PeriodicalId\":11664,\"journal\":{\"name\":\"Energy Conversion and Management\",\"volume\":\"322 \",\"pages\":\"\"},\"PeriodicalIF\":9.9000,\"publicationDate\":\"2024-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy Conversion and Management\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0196890424010999\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Conversion and Management","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0196890424010999","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Full-spectrum solar water decomposition for hydrogen production via a concentrating photovoltaic-thermal power generator-solid oxide electrolysis cell system
This study introduces a novel solar-powered concentrating photovoltaic-thermal power generator-solid oxide electrolysis cell system designed to enhance hydrogen production efficiency by optimizing both electrical and thermal energy utilization. The system incorporates a thermal power generator to convert excess high-temperature thermal energy into electrical energy, addressing energy losses associated with high-temperature water electrolysis. Thermodynamic analysis shows that the integration of the thermal power generator improves energy and exergy efficiencies to 0.60 and 0.52, while lowering the optimal operating temperature to 1173 K. The system’s efficiency is sensitive to the proportion of electrical energy supplied by the thermal power generator, with an optimal range identified between 0.1 and 0.2. Higher temperatures improve hydrogen production and efficiency, but increased voltage negatively impacts thermodynamic efficiency. These findings demonstrate that the proposed system offers substantial improvements over conventional solar hydrogen production methods, making it a promising candidate for sustainable hydrogen production. Further research will focus on system integration, material costs, and scalability for commercial use.
期刊介绍:
The journal Energy Conversion and Management provides a forum for publishing original contributions and comprehensive technical review articles of interdisciplinary and original research on all important energy topics.
The topics considered include energy generation, utilization, conversion, storage, transmission, conservation, management and sustainability. These topics typically involve various types of energy such as mechanical, thermal, nuclear, chemical, electromagnetic, magnetic and electric. These energy types cover all known energy resources, including renewable resources (e.g., solar, bio, hydro, wind, geothermal and ocean energy), fossil fuels and nuclear resources.