{"title":"具有动态资产和随机流动性相关性的随机截止日期内幕交易","authors":"Jixiu Qiu , Yonghui Zhou","doi":"10.1016/j.amc.2024.129120","DOIUrl":null,"url":null,"abstract":"<div><div>We propose a generalized continuous-time insider trading model, building upon the frameworks of Caldentey and Stacchetti (2010) and Collin-Dufresne and Fos (2016), with a correlation between the value of a risky asset following an Ornstein-Uhlenbeck-type process and the noise trading volume with volatility characterized by a general stochastic process. And a closed form of the market equilibrium is established, consisting of the insider's trading strategy and the market makers' pricing rule. It shows that at the equilibrium: (i) all of the insider's private information is released at the end of the transaction; (ii) market depth and market liquidity evolve as semi-martingales, respectively; and (iii) the equilibrium price is driven by a bridge process that solves an Ornstein-Uhlenbeck-type SDE. Numerical simulations show that as the correlation coefficient increases, the equilibrium price becomes more informative, leading to a decrease in both the trading intensity and the expected payoff for the insider.</div></div>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Insider trading at a random deadline with correlation between dynamic asset and stochastic liquidity\",\"authors\":\"Jixiu Qiu , Yonghui Zhou\",\"doi\":\"10.1016/j.amc.2024.129120\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We propose a generalized continuous-time insider trading model, building upon the frameworks of Caldentey and Stacchetti (2010) and Collin-Dufresne and Fos (2016), with a correlation between the value of a risky asset following an Ornstein-Uhlenbeck-type process and the noise trading volume with volatility characterized by a general stochastic process. And a closed form of the market equilibrium is established, consisting of the insider's trading strategy and the market makers' pricing rule. It shows that at the equilibrium: (i) all of the insider's private information is released at the end of the transaction; (ii) market depth and market liquidity evolve as semi-martingales, respectively; and (iii) the equilibrium price is driven by a bridge process that solves an Ornstein-Uhlenbeck-type SDE. Numerical simulations show that as the correlation coefficient increases, the equilibrium price becomes more informative, leading to a decrease in both the trading intensity and the expected payoff for the insider.</div></div>\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0096300324005812\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0096300324005812","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Insider trading at a random deadline with correlation between dynamic asset and stochastic liquidity
We propose a generalized continuous-time insider trading model, building upon the frameworks of Caldentey and Stacchetti (2010) and Collin-Dufresne and Fos (2016), with a correlation between the value of a risky asset following an Ornstein-Uhlenbeck-type process and the noise trading volume with volatility characterized by a general stochastic process. And a closed form of the market equilibrium is established, consisting of the insider's trading strategy and the market makers' pricing rule. It shows that at the equilibrium: (i) all of the insider's private information is released at the end of the transaction; (ii) market depth and market liquidity evolve as semi-martingales, respectively; and (iii) the equilibrium price is driven by a bridge process that solves an Ornstein-Uhlenbeck-type SDE. Numerical simulations show that as the correlation coefficient increases, the equilibrium price becomes more informative, leading to a decrease in both the trading intensity and the expected payoff for the insider.