通过常压-气相沉积在不同基底上合成氧化锰薄膜

IF 5.3 2区 材料科学 Q1 MATERIALS SCIENCE, COATINGS & FILMS
{"title":"通过常压-气相沉积在不同基底上合成氧化锰薄膜","authors":"","doi":"10.1016/j.surfcoat.2024.131440","DOIUrl":null,"url":null,"abstract":"<div><div>In this study, we report the synthesis of manganese oxide (Mn<sub>x</sub>O<sub>y</sub>) thin films on stainless steel, silicon, and borosilicate glass substrates via atmospheric pressure chemical vapor deposition (AP-CVD) using Mn(thd)<sub>3</sub> and O<sub>3</sub> as precursor and reactive gas, respectively. Deposition was achieved at a low temperature of 300 °C under atmospheric pressure, offering a cost-effective and scalable alternative to traditional high-vacuum CVD methods. The films displayed excellent adhesion and reproducibility, with substrate-dependent variations in film coloration, crystal phases, and morphology. X-ray diffraction (XRD) and Raman spectroscopy confirmed the presence of Mn<sub>3</sub>O<sub>4</sub> and Mn<sub>2</sub>O<sub>3</sub> phases, with Mn<sub>3</sub>O<sub>4</sub> predominating on stainless steel and silicon, while Mn<sub>2</sub>O<sub>3</sub> was more prominent on glass. Scanning electron microscopy (SEM) revealed granular structures with uniform grain sizes, particularly on stainless steel substrates. X-ray photoelectron spectroscopy (XPS) confirmed Mn<sup>2+</sup> and Mn<sup>3+</sup> oxidation states, consistent with the phase distribution observed by XRD and Raman analysis. This work demonstrates the potential of AP-CVD for scalable manganese oxide thin-film synthesis, particularly for energy storage applications, where Mn<sub>3</sub>O<sub>4</sub> and Mn<sub>2</sub>O<sub>3</sub> can serve as precursors to δ-MnO<sub>2</sub> in supercapacitors. The method's simplicity, combined with the high-quality films produced, makes it a promising approach for future research and industrial-scale applications.</div></div>","PeriodicalId":22009,"journal":{"name":"Surface & Coatings Technology","volume":null,"pages":null},"PeriodicalIF":5.3000,"publicationDate":"2024-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synthesis of manganese oxide thin films deposited on different substrates via atmospheric pressure-CVD\",\"authors\":\"\",\"doi\":\"10.1016/j.surfcoat.2024.131440\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this study, we report the synthesis of manganese oxide (Mn<sub>x</sub>O<sub>y</sub>) thin films on stainless steel, silicon, and borosilicate glass substrates via atmospheric pressure chemical vapor deposition (AP-CVD) using Mn(thd)<sub>3</sub> and O<sub>3</sub> as precursor and reactive gas, respectively. Deposition was achieved at a low temperature of 300 °C under atmospheric pressure, offering a cost-effective and scalable alternative to traditional high-vacuum CVD methods. The films displayed excellent adhesion and reproducibility, with substrate-dependent variations in film coloration, crystal phases, and morphology. X-ray diffraction (XRD) and Raman spectroscopy confirmed the presence of Mn<sub>3</sub>O<sub>4</sub> and Mn<sub>2</sub>O<sub>3</sub> phases, with Mn<sub>3</sub>O<sub>4</sub> predominating on stainless steel and silicon, while Mn<sub>2</sub>O<sub>3</sub> was more prominent on glass. Scanning electron microscopy (SEM) revealed granular structures with uniform grain sizes, particularly on stainless steel substrates. X-ray photoelectron spectroscopy (XPS) confirmed Mn<sup>2+</sup> and Mn<sup>3+</sup> oxidation states, consistent with the phase distribution observed by XRD and Raman analysis. This work demonstrates the potential of AP-CVD for scalable manganese oxide thin-film synthesis, particularly for energy storage applications, where Mn<sub>3</sub>O<sub>4</sub> and Mn<sub>2</sub>O<sub>3</sub> can serve as precursors to δ-MnO<sub>2</sub> in supercapacitors. The method's simplicity, combined with the high-quality films produced, makes it a promising approach for future research and industrial-scale applications.</div></div>\",\"PeriodicalId\":22009,\"journal\":{\"name\":\"Surface & Coatings Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-10-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Surface & Coatings Technology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0257897224010715\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, COATINGS & FILMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Surface & Coatings Technology","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0257897224010715","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, COATINGS & FILMS","Score":null,"Total":0}
引用次数: 0

摘要

在本研究中,我们报告了分别以 Mn(thd)3 和 O3 为前驱体和反应气体,通过大气压化学气相沉积(AP-CVD)在不锈钢、硅和硼硅玻璃基底上合成氧化锰(MnxOy)薄膜的过程。沉积是在 300 °C 的低温常压条件下实现的,为传统的高真空 CVD 方法提供了一种具有成本效益和可扩展性的替代方法。薄膜显示出极佳的附着力和可重复性,薄膜着色、晶相和形态的变化与基底有关。X 射线衍射 (XRD) 和拉曼光谱证实了 Mn3O4 和 Mn2O3 相的存在,其中 Mn3O4 在不锈钢和硅上占主导地位,而 Mn2O3 在玻璃上更为突出。扫描电子显微镜(SEM)显示出晶粒大小均匀的颗粒状结构,尤其是在不锈钢基底上。X 射线光电子能谱 (XPS) 证实了 Mn2+ 和 Mn3+ 的氧化态,与 XRD 和拉曼分析观察到的相分布一致。这项工作证明了 AP-CVD 在可扩展的氧化锰薄膜合成方面的潜力,特别是在能量存储应用方面,Mn3O4 和 Mn2O3 可以作为超级电容器中 δ-MnO2 的前体。该方法简单易行,而且能制备出高质量的薄膜,因此在未来的研究和工业规模应用中大有可为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Synthesis of manganese oxide thin films deposited on different substrates via atmospheric pressure-CVD
In this study, we report the synthesis of manganese oxide (MnxOy) thin films on stainless steel, silicon, and borosilicate glass substrates via atmospheric pressure chemical vapor deposition (AP-CVD) using Mn(thd)3 and O3 as precursor and reactive gas, respectively. Deposition was achieved at a low temperature of 300 °C under atmospheric pressure, offering a cost-effective and scalable alternative to traditional high-vacuum CVD methods. The films displayed excellent adhesion and reproducibility, with substrate-dependent variations in film coloration, crystal phases, and morphology. X-ray diffraction (XRD) and Raman spectroscopy confirmed the presence of Mn3O4 and Mn2O3 phases, with Mn3O4 predominating on stainless steel and silicon, while Mn2O3 was more prominent on glass. Scanning electron microscopy (SEM) revealed granular structures with uniform grain sizes, particularly on stainless steel substrates. X-ray photoelectron spectroscopy (XPS) confirmed Mn2+ and Mn3+ oxidation states, consistent with the phase distribution observed by XRD and Raman analysis. This work demonstrates the potential of AP-CVD for scalable manganese oxide thin-film synthesis, particularly for energy storage applications, where Mn3O4 and Mn2O3 can serve as precursors to δ-MnO2 in supercapacitors. The method's simplicity, combined with the high-quality films produced, makes it a promising approach for future research and industrial-scale applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Surface & Coatings Technology
Surface & Coatings Technology 工程技术-材料科学:膜
CiteScore
10.00
自引率
11.10%
发文量
921
审稿时长
19 days
期刊介绍: Surface and Coatings Technology is an international archival journal publishing scientific papers on significant developments in surface and interface engineering to modify and improve the surface properties of materials for protection in demanding contact conditions or aggressive environments, or for enhanced functional performance. Contributions range from original scientific articles concerned with fundamental and applied aspects of research or direct applications of metallic, inorganic, organic and composite coatings, to invited reviews of current technology in specific areas. Papers submitted to this journal are expected to be in line with the following aspects in processes, and properties/performance: A. Processes: Physical and chemical vapour deposition techniques, thermal and plasma spraying, surface modification by directed energy techniques such as ion, electron and laser beams, thermo-chemical treatment, wet chemical and electrochemical processes such as plating, sol-gel coating, anodization, plasma electrolytic oxidation, etc., but excluding painting. B. Properties/performance: friction performance, wear resistance (e.g., abrasion, erosion, fretting, etc), corrosion and oxidation resistance, thermal protection, diffusion resistance, hydrophilicity/hydrophobicity, and properties relevant to smart materials behaviour and enhanced multifunctional performance for environmental, energy and medical applications, but excluding device aspects.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信