{"title":"阿糖胞苷化疗诱发睑板腺功能障碍","authors":"Ren Liu , Jianwen Xue , Jiaxu Han, Mengqian Tu, Wenhui Wang, Ziyan Chen, Xiaobing Qian, Bing Xiao, Lingyi Liang","doi":"10.1016/j.jtos.2024.10.002","DOIUrl":null,"url":null,"abstract":"<div><h3>Purpose</h3><div>Cytarabine (Ara-C) chemotherapy causes symptoms resembling meibomian gland dysfunction (MGD), suggesting potential associations between Ara-C and MGD. In this study, the pathological effects of Ara-C on MGD were investigated in a rodent model.</div></div><div><h3>Methods</h3><div>Mice received Ara-C with or without rosiglitazone (PPARγ agonist) for 7 consecutive days. Slit-lamp biomicroscope was used for ocular examinations. Immunofluorescence detected acinar cell proliferation, differentiation, and ductal keratinization in the meibomian gland (MG). Lipid accumulation was evaluated by Oil Red O and LipidTox staining. Lipogenic status, FoxO1/FoxO3a cellular localization, and oxidative stress were visualized via immunohistochemistry. Western blotting assessed relative protein expression and AKT/FoxO1/FoxO3a pathway phosphorylation.</div></div><div><h3>Results</h3><div>Ara-C (50 mg/kg) did not affect mouse survival but induced damage to ocular surface microenvironment, including corneal epithelial defects, MG orifice plugging and acinar dropout, and lacrimal gland (LG) dysfunction. Ara-C intervention inhibited proliferation and caused progenitor loss in the MG, as evidenced by reduced PCNA + labeling and P63+/Lrig1+ basal cell numbers. The MG ducts of Ara-C-treated mice exhibited marked dilatation, lipid deposition, and hyperkeratinization (K1/K10 overexpression). Ara-C disrupted MG lipid metabolism by downregulating PPARγ and its downstream lipogenic targets AWAT2/SOAT1/ELOVL4 and upregulating HMGCR. Dephosphorylation of AKT and the subsequent nuclear translocation of FoxO1/FoxO3a contributed to Ara-C-induced PPARγ downregulation. Ara-C triggered oxidative stress with increases in 4-HNE and 8-OHdG and Keap1/Nrf2/HO-1/SOD1 axis dysregulation. Rosiglitazone treatment ameliorated MGD-associated pathological manifestations, LG function, MG lipid metabolism, and oxidative stress in Ara-C-exposed mice.</div></div><div><h3>Conclusions</h3><div>Systemic Ara-C chemotherapy exerted topical cytotoxic effects on the ocular surface, and PPARγ restoration by rosiglitazone mitigated Ara-C-induced MGD alterations.</div></div>","PeriodicalId":54691,"journal":{"name":"Ocular Surface","volume":"34 ","pages":"Pages 444-458"},"PeriodicalIF":5.9000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cytarabine chemotherapy induces meibomian gland dysfunction\",\"authors\":\"Ren Liu , Jianwen Xue , Jiaxu Han, Mengqian Tu, Wenhui Wang, Ziyan Chen, Xiaobing Qian, Bing Xiao, Lingyi Liang\",\"doi\":\"10.1016/j.jtos.2024.10.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Purpose</h3><div>Cytarabine (Ara-C) chemotherapy causes symptoms resembling meibomian gland dysfunction (MGD), suggesting potential associations between Ara-C and MGD. In this study, the pathological effects of Ara-C on MGD were investigated in a rodent model.</div></div><div><h3>Methods</h3><div>Mice received Ara-C with or without rosiglitazone (PPARγ agonist) for 7 consecutive days. Slit-lamp biomicroscope was used for ocular examinations. Immunofluorescence detected acinar cell proliferation, differentiation, and ductal keratinization in the meibomian gland (MG). Lipid accumulation was evaluated by Oil Red O and LipidTox staining. Lipogenic status, FoxO1/FoxO3a cellular localization, and oxidative stress were visualized via immunohistochemistry. Western blotting assessed relative protein expression and AKT/FoxO1/FoxO3a pathway phosphorylation.</div></div><div><h3>Results</h3><div>Ara-C (50 mg/kg) did not affect mouse survival but induced damage to ocular surface microenvironment, including corneal epithelial defects, MG orifice plugging and acinar dropout, and lacrimal gland (LG) dysfunction. Ara-C intervention inhibited proliferation and caused progenitor loss in the MG, as evidenced by reduced PCNA + labeling and P63+/Lrig1+ basal cell numbers. The MG ducts of Ara-C-treated mice exhibited marked dilatation, lipid deposition, and hyperkeratinization (K1/K10 overexpression). Ara-C disrupted MG lipid metabolism by downregulating PPARγ and its downstream lipogenic targets AWAT2/SOAT1/ELOVL4 and upregulating HMGCR. Dephosphorylation of AKT and the subsequent nuclear translocation of FoxO1/FoxO3a contributed to Ara-C-induced PPARγ downregulation. Ara-C triggered oxidative stress with increases in 4-HNE and 8-OHdG and Keap1/Nrf2/HO-1/SOD1 axis dysregulation. Rosiglitazone treatment ameliorated MGD-associated pathological manifestations, LG function, MG lipid metabolism, and oxidative stress in Ara-C-exposed mice.</div></div><div><h3>Conclusions</h3><div>Systemic Ara-C chemotherapy exerted topical cytotoxic effects on the ocular surface, and PPARγ restoration by rosiglitazone mitigated Ara-C-induced MGD alterations.</div></div>\",\"PeriodicalId\":54691,\"journal\":{\"name\":\"Ocular Surface\",\"volume\":\"34 \",\"pages\":\"Pages 444-458\"},\"PeriodicalIF\":5.9000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ocular Surface\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1542012424001083\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OPHTHALMOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ocular Surface","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1542012424001083","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPHTHALMOLOGY","Score":null,"Total":0}
Cytarabine (Ara-C) chemotherapy causes symptoms resembling meibomian gland dysfunction (MGD), suggesting potential associations between Ara-C and MGD. In this study, the pathological effects of Ara-C on MGD were investigated in a rodent model.
Methods
Mice received Ara-C with or without rosiglitazone (PPARγ agonist) for 7 consecutive days. Slit-lamp biomicroscope was used for ocular examinations. Immunofluorescence detected acinar cell proliferation, differentiation, and ductal keratinization in the meibomian gland (MG). Lipid accumulation was evaluated by Oil Red O and LipidTox staining. Lipogenic status, FoxO1/FoxO3a cellular localization, and oxidative stress were visualized via immunohistochemistry. Western blotting assessed relative protein expression and AKT/FoxO1/FoxO3a pathway phosphorylation.
Results
Ara-C (50 mg/kg) did not affect mouse survival but induced damage to ocular surface microenvironment, including corneal epithelial defects, MG orifice plugging and acinar dropout, and lacrimal gland (LG) dysfunction. Ara-C intervention inhibited proliferation and caused progenitor loss in the MG, as evidenced by reduced PCNA + labeling and P63+/Lrig1+ basal cell numbers. The MG ducts of Ara-C-treated mice exhibited marked dilatation, lipid deposition, and hyperkeratinization (K1/K10 overexpression). Ara-C disrupted MG lipid metabolism by downregulating PPARγ and its downstream lipogenic targets AWAT2/SOAT1/ELOVL4 and upregulating HMGCR. Dephosphorylation of AKT and the subsequent nuclear translocation of FoxO1/FoxO3a contributed to Ara-C-induced PPARγ downregulation. Ara-C triggered oxidative stress with increases in 4-HNE and 8-OHdG and Keap1/Nrf2/HO-1/SOD1 axis dysregulation. Rosiglitazone treatment ameliorated MGD-associated pathological manifestations, LG function, MG lipid metabolism, and oxidative stress in Ara-C-exposed mice.
Conclusions
Systemic Ara-C chemotherapy exerted topical cytotoxic effects on the ocular surface, and PPARγ restoration by rosiglitazone mitigated Ara-C-induced MGD alterations.
期刊介绍:
The Ocular Surface, a quarterly, a peer-reviewed journal, is an authoritative resource that integrates and interprets major findings in diverse fields related to the ocular surface, including ophthalmology, optometry, genetics, molecular biology, pharmacology, immunology, infectious disease, and epidemiology. Its critical review articles cover the most current knowledge on medical and surgical management of ocular surface pathology, new understandings of ocular surface physiology, the meaning of recent discoveries on how the ocular surface responds to injury and disease, and updates on drug and device development. The journal also publishes select original research reports and articles describing cutting-edge techniques and technology in the field.
Benefits to authors
We also provide many author benefits, such as free PDFs, a liberal copyright policy, special discounts on Elsevier publications and much more. Please click here for more information on our author services.
Please see our Guide for Authors for information on article submission. If you require any further information or help, please visit our Support Center