利用近红外高光谱成像技术快速测定单粒花生种子的含油量

Q3 Agricultural and Biological Sciences
Shunting Zhang , Xue Li , Du Wang , Li Yu , Fei Ma , Xuefang Wang , Mengxue Fang , Huiying Lyu , Liangxiao Zhang , Zhiyong Gong , Peiwu Li
{"title":"利用近红外高光谱成像技术快速测定单粒花生种子的含油量","authors":"Shunting Zhang ,&nbsp;Xue Li ,&nbsp;Du Wang ,&nbsp;Li Yu ,&nbsp;Fei Ma ,&nbsp;Xuefang Wang ,&nbsp;Mengxue Fang ,&nbsp;Huiying Lyu ,&nbsp;Liangxiao Zhang ,&nbsp;Zhiyong Gong ,&nbsp;Peiwu Li","doi":"10.1016/j.ocsci.2024.05.002","DOIUrl":null,"url":null,"abstract":"<div><div>Oil content is a crucial indicator for evaluating the quality of peanuts. A rapid and non-destructive method to determine oil content of individual peanut seed can provide robust technical support for breeding high-oil-content peanut varieties. In this study, we established a rapid determination method using near-infrared hyperspectral imaging and chemometrics to assess the oil content of single peanut seed. After selecting key wavelengths through competitive adaptive reweighted sampling (CARS), uninformative variable elimination (UVE), and random frog (RF), we constructed an oil content calibration model based on partial least squares regression for single peanut seed. Validation results demonstrated that the correlation coefficient was 0.8393 with a root mean square error of 1.7771 in the calibration set, while it was 0.7915 with a root mean square error of 2.2943 in the independent prediction set. Most samples exhibited relative errors below 5%, confirming the reliability of this model in predicting oil content of single peanut seed.</div></div>","PeriodicalId":34095,"journal":{"name":"Oil Crop Science","volume":"9 4","pages":"Pages 220-224"},"PeriodicalIF":0.0000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rapid determination of oil content of single peanut seed by near-infrared hyperspectral imaging\",\"authors\":\"Shunting Zhang ,&nbsp;Xue Li ,&nbsp;Du Wang ,&nbsp;Li Yu ,&nbsp;Fei Ma ,&nbsp;Xuefang Wang ,&nbsp;Mengxue Fang ,&nbsp;Huiying Lyu ,&nbsp;Liangxiao Zhang ,&nbsp;Zhiyong Gong ,&nbsp;Peiwu Li\",\"doi\":\"10.1016/j.ocsci.2024.05.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Oil content is a crucial indicator for evaluating the quality of peanuts. A rapid and non-destructive method to determine oil content of individual peanut seed can provide robust technical support for breeding high-oil-content peanut varieties. In this study, we established a rapid determination method using near-infrared hyperspectral imaging and chemometrics to assess the oil content of single peanut seed. After selecting key wavelengths through competitive adaptive reweighted sampling (CARS), uninformative variable elimination (UVE), and random frog (RF), we constructed an oil content calibration model based on partial least squares regression for single peanut seed. Validation results demonstrated that the correlation coefficient was 0.8393 with a root mean square error of 1.7771 in the calibration set, while it was 0.7915 with a root mean square error of 2.2943 in the independent prediction set. Most samples exhibited relative errors below 5%, confirming the reliability of this model in predicting oil content of single peanut seed.</div></div>\",\"PeriodicalId\":34095,\"journal\":{\"name\":\"Oil Crop Science\",\"volume\":\"9 4\",\"pages\":\"Pages 220-224\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Oil Crop Science\",\"FirstCategoryId\":\"1091\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2096242824000605\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Agricultural and Biological Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Oil Crop Science","FirstCategoryId":"1091","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2096242824000605","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 0

摘要

含油量是评价花生质量的一个重要指标。快速、无损地测定单粒花生种子含油量的方法可为培育高含油量花生品种提供有力的技术支持。在本研究中,我们建立了一种利用近红外高光谱成像和化学计量学评估单粒花生种子含油量的快速测定方法。通过竞争性自适应加权采样(CARS)、无信息变量剔除(UVE)和随机蛙法(RF)选择关键波长后,我们构建了基于偏最小二乘回归的单粒花生种子含油量校准模型。验证结果表明,校准集的相关系数为 0.8393,均方根误差为 1.7771;独立预测集的相关系数为 0.7915,均方根误差为 2.2943。大多数样本的相对误差低于 5%,这证实了该模型在预测单粒花生种子含油量方面的可靠性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Rapid determination of oil content of single peanut seed by near-infrared hyperspectral imaging
Oil content is a crucial indicator for evaluating the quality of peanuts. A rapid and non-destructive method to determine oil content of individual peanut seed can provide robust technical support for breeding high-oil-content peanut varieties. In this study, we established a rapid determination method using near-infrared hyperspectral imaging and chemometrics to assess the oil content of single peanut seed. After selecting key wavelengths through competitive adaptive reweighted sampling (CARS), uninformative variable elimination (UVE), and random frog (RF), we constructed an oil content calibration model based on partial least squares regression for single peanut seed. Validation results demonstrated that the correlation coefficient was 0.8393 with a root mean square error of 1.7771 in the calibration set, while it was 0.7915 with a root mean square error of 2.2943 in the independent prediction set. Most samples exhibited relative errors below 5%, confirming the reliability of this model in predicting oil content of single peanut seed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Oil Crop Science
Oil Crop Science Food Science, Plant Science, Agronomy and Crop Science
CiteScore
3.40
自引率
0.00%
发文量
20
审稿时长
74 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信