{"title":"智能电网中需求响应的分析与控制:进化博弈法","authors":"Mengyu Zhou , Xingwen Liu , Qi Hu , Feng Shu","doi":"10.1016/j.amc.2024.129130","DOIUrl":null,"url":null,"abstract":"<div><div>As an effective strategy for load management in smart grids, demand response establishes a bidirectional connection between the electricity supplier and users. Based on the networked evolutionary game theory, this paper studies the demand-response issue for a class of smart grids by using the semi-tensor product of matrices. The paper proceeds as follows. (i) Considering the dynamic interactions between the supplier and users, the demand response is modeled as a heterogeneous networked evolutionary game and is expressed as dynamical form by semi-tensor product. (ii) A sufficient and necessary condition is provided to verify the convergence to a fixed point of the considered system. (iii) A feedback controller is designed to ensure the system electricity consumption and price to maintain at a desired level. Finally, an example is presented to illustrate the feasibility of the proposed method.</div></div>","PeriodicalId":55496,"journal":{"name":"Applied Mathematics and Computation","volume":"488 ","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analysis and control of demand response in smart grids: An evolutionary game method\",\"authors\":\"Mengyu Zhou , Xingwen Liu , Qi Hu , Feng Shu\",\"doi\":\"10.1016/j.amc.2024.129130\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>As an effective strategy for load management in smart grids, demand response establishes a bidirectional connection between the electricity supplier and users. Based on the networked evolutionary game theory, this paper studies the demand-response issue for a class of smart grids by using the semi-tensor product of matrices. The paper proceeds as follows. (i) Considering the dynamic interactions between the supplier and users, the demand response is modeled as a heterogeneous networked evolutionary game and is expressed as dynamical form by semi-tensor product. (ii) A sufficient and necessary condition is provided to verify the convergence to a fixed point of the considered system. (iii) A feedback controller is designed to ensure the system electricity consumption and price to maintain at a desired level. Finally, an example is presented to illustrate the feasibility of the proposed method.</div></div>\",\"PeriodicalId\":55496,\"journal\":{\"name\":\"Applied Mathematics and Computation\",\"volume\":\"488 \",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Mathematics and Computation\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0096300324005915\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics and Computation","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0096300324005915","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Analysis and control of demand response in smart grids: An evolutionary game method
As an effective strategy for load management in smart grids, demand response establishes a bidirectional connection between the electricity supplier and users. Based on the networked evolutionary game theory, this paper studies the demand-response issue for a class of smart grids by using the semi-tensor product of matrices. The paper proceeds as follows. (i) Considering the dynamic interactions between the supplier and users, the demand response is modeled as a heterogeneous networked evolutionary game and is expressed as dynamical form by semi-tensor product. (ii) A sufficient and necessary condition is provided to verify the convergence to a fixed point of the considered system. (iii) A feedback controller is designed to ensure the system electricity consumption and price to maintain at a desired level. Finally, an example is presented to illustrate the feasibility of the proposed method.
期刊介绍:
Applied Mathematics and Computation addresses work at the interface between applied mathematics, numerical computation, and applications of systems – oriented ideas to the physical, biological, social, and behavioral sciences, and emphasizes papers of a computational nature focusing on new algorithms, their analysis and numerical results.
In addition to presenting research papers, Applied Mathematics and Computation publishes review articles and single–topics issues.