通过对数下降方向算法解决最小凹成本供应问题的拉格朗日障碍法

IF 3.5 2区 数学 Q1 MATHEMATICS, APPLIED
Yaolong Yu , Zhengtian Wu , Baoping Jiang , Huaicheng Yan , Yichen Lu
{"title":"通过对数下降方向算法解决最小凹成本供应问题的拉格朗日障碍法","authors":"Yaolong Yu ,&nbsp;Zhengtian Wu ,&nbsp;Baoping Jiang ,&nbsp;Huaicheng Yan ,&nbsp;Yichen Lu","doi":"10.1016/j.amc.2024.129114","DOIUrl":null,"url":null,"abstract":"<div><div>The minimisation of concave costs in the supply chain presents a challenging non-deterministic polynomial (NP) optimisation problem, widely applicable in industrial and management engineering. To approximate solutions to this problem, we propose a logarithmic descent direction algorithm (LDDA) that utilises the Lagrange logarithmic barrier function. As the barrier variable decreases from a high positive value to zero, the algorithm is capable of tracking the minimal track of the logarithmic barrier function, thereby obtaining top-quality solutions. The Lagrange function is utilised to handle linear equality constraints, whilst the logarithmic barrier function compels the solution towards the global or near-global optimum. Within this concave cost supply model, a logarithmic descent direction is constructed, and an iterative optimisation process for the algorithm is proposed. A corresponding Lyapunov function naturally emerges from this descent direction, thus ensuring convergence of the proposed algorithm. Numerical results demonstrate the effectiveness of the algorithm.</div></div>","PeriodicalId":55496,"journal":{"name":"Applied Mathematics and Computation","volume":"488 ","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Lagrange barrier approach for the minimum concave cost supply problem via a logarithmic descent direction algorithm\",\"authors\":\"Yaolong Yu ,&nbsp;Zhengtian Wu ,&nbsp;Baoping Jiang ,&nbsp;Huaicheng Yan ,&nbsp;Yichen Lu\",\"doi\":\"10.1016/j.amc.2024.129114\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The minimisation of concave costs in the supply chain presents a challenging non-deterministic polynomial (NP) optimisation problem, widely applicable in industrial and management engineering. To approximate solutions to this problem, we propose a logarithmic descent direction algorithm (LDDA) that utilises the Lagrange logarithmic barrier function. As the barrier variable decreases from a high positive value to zero, the algorithm is capable of tracking the minimal track of the logarithmic barrier function, thereby obtaining top-quality solutions. The Lagrange function is utilised to handle linear equality constraints, whilst the logarithmic barrier function compels the solution towards the global or near-global optimum. Within this concave cost supply model, a logarithmic descent direction is constructed, and an iterative optimisation process for the algorithm is proposed. A corresponding Lyapunov function naturally emerges from this descent direction, thus ensuring convergence of the proposed algorithm. Numerical results demonstrate the effectiveness of the algorithm.</div></div>\",\"PeriodicalId\":55496,\"journal\":{\"name\":\"Applied Mathematics and Computation\",\"volume\":\"488 \",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Mathematics and Computation\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0096300324005757\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics and Computation","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0096300324005757","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

供应链中凹成本的最小化是一个具有挑战性的非确定多项式(NP)优化问题,广泛应用于工业和管理工程领域。为了近似解决这一问题,我们提出了一种利用拉格朗日对数障碍函数的对数下降方向算法(LDDA)。当障碍变量从高正值下降到零时,该算法能够跟踪对数障碍函数的最小轨迹,从而获得高质量的解决方案。拉格朗日函数用于处理线性相等约束条件,而对数障碍函数则迫使求解走向全局或接近全局最优。在这个凹成本供应模型中,构建了一个对数下降方向,并提出了算法的迭代优化过程。相应的 Lyapunov 函数会从这个下降方向自然产生,从而确保所提算法的收敛性。数值结果证明了该算法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Lagrange barrier approach for the minimum concave cost supply problem via a logarithmic descent direction algorithm
The minimisation of concave costs in the supply chain presents a challenging non-deterministic polynomial (NP) optimisation problem, widely applicable in industrial and management engineering. To approximate solutions to this problem, we propose a logarithmic descent direction algorithm (LDDA) that utilises the Lagrange logarithmic barrier function. As the barrier variable decreases from a high positive value to zero, the algorithm is capable of tracking the minimal track of the logarithmic barrier function, thereby obtaining top-quality solutions. The Lagrange function is utilised to handle linear equality constraints, whilst the logarithmic barrier function compels the solution towards the global or near-global optimum. Within this concave cost supply model, a logarithmic descent direction is constructed, and an iterative optimisation process for the algorithm is proposed. A corresponding Lyapunov function naturally emerges from this descent direction, thus ensuring convergence of the proposed algorithm. Numerical results demonstrate the effectiveness of the algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.90
自引率
10.00%
发文量
755
审稿时长
36 days
期刊介绍: Applied Mathematics and Computation addresses work at the interface between applied mathematics, numerical computation, and applications of systems – oriented ideas to the physical, biological, social, and behavioral sciences, and emphasizes papers of a computational nature focusing on new algorithms, their analysis and numerical results. In addition to presenting research papers, Applied Mathematics and Computation publishes review articles and single–topics issues.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信