深度时间神经网络:解决高维 PDE 的高效方法

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Ahmad Aghapour , Hamid Arian , Luis Seco
{"title":"深度时间神经网络:解决高维 PDE 的高效方法","authors":"Ahmad Aghapour ,&nbsp;Hamid Arian ,&nbsp;Luis Seco","doi":"10.1016/j.amc.2024.129117","DOIUrl":null,"url":null,"abstract":"<div><div>This paper presents the Deep-Time Neural Network (DTNN), an efficient and novel deep-learning approach for solving partial differential equations (PDEs). DTNN leverages the power of deep neural networks to approximate the solution for a class of quasi-linear parabolic PDEs. We demonstrate that DTNN significantly reduces the computational cost and speeds up the training process compared to other models in the literature. The results of our study indicate that DTNN architecture is promising for the fast and accurate solution of time-dependent PDEs in various scientific and engineering applications. The DTNN architecture addresses the pressing need for enhanced time considerations in the deeper layers of Artificial Neural Networks (ANNs), thereby improving convergence time for high-dimensional PDE solutions. This is achieved by integrating time into the hidden layers of the DTNN, demonstrating a marked improvement over existing ANN-based solutions regarding efficiency and speed.</div></div>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deep-time neural networks: An efficient approach for solving high-dimensional PDEs\",\"authors\":\"Ahmad Aghapour ,&nbsp;Hamid Arian ,&nbsp;Luis Seco\",\"doi\":\"10.1016/j.amc.2024.129117\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper presents the Deep-Time Neural Network (DTNN), an efficient and novel deep-learning approach for solving partial differential equations (PDEs). DTNN leverages the power of deep neural networks to approximate the solution for a class of quasi-linear parabolic PDEs. We demonstrate that DTNN significantly reduces the computational cost and speeds up the training process compared to other models in the literature. The results of our study indicate that DTNN architecture is promising for the fast and accurate solution of time-dependent PDEs in various scientific and engineering applications. The DTNN architecture addresses the pressing need for enhanced time considerations in the deeper layers of Artificial Neural Networks (ANNs), thereby improving convergence time for high-dimensional PDE solutions. This is achieved by integrating time into the hidden layers of the DTNN, demonstrating a marked improvement over existing ANN-based solutions regarding efficiency and speed.</div></div>\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0096300324005782\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0096300324005782","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了用于求解偏微分方程(PDEs)的高效、新颖的深度学习方法--深度时间神经网络(DTNN)。DTNN 利用深度神经网络的强大功能来近似求解一类准线性抛物线偏微分方程。我们证明,与文献中的其他模型相比,DTNN 大大降低了计算成本,加快了训练过程。我们的研究结果表明,DTNN 架构有望在各种科学和工程应用中快速、准确地解决随时间变化的多项式方程。DTNN 架构解决了在人工神经网络(ANN)深层加强时间考虑的迫切需求,从而改善了高维 PDE 解法的收敛时间。这是通过将时间整合到 DTNN 的隐藏层来实现的,在效率和速度方面与现有的基于人工神经网络的解决方案相比有了明显的改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deep-time neural networks: An efficient approach for solving high-dimensional PDEs
This paper presents the Deep-Time Neural Network (DTNN), an efficient and novel deep-learning approach for solving partial differential equations (PDEs). DTNN leverages the power of deep neural networks to approximate the solution for a class of quasi-linear parabolic PDEs. We demonstrate that DTNN significantly reduces the computational cost and speeds up the training process compared to other models in the literature. The results of our study indicate that DTNN architecture is promising for the fast and accurate solution of time-dependent PDEs in various scientific and engineering applications. The DTNN architecture addresses the pressing need for enhanced time considerations in the deeper layers of Artificial Neural Networks (ANNs), thereby improving convergence time for high-dimensional PDE solutions. This is achieved by integrating time into the hidden layers of the DTNN, demonstrating a marked improvement over existing ANN-based solutions regarding efficiency and speed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信