{"title":"深度时间神经网络:解决高维 PDE 的高效方法","authors":"Ahmad Aghapour , Hamid Arian , Luis Seco","doi":"10.1016/j.amc.2024.129117","DOIUrl":null,"url":null,"abstract":"<div><div>This paper presents the Deep-Time Neural Network (DTNN), an efficient and novel deep-learning approach for solving partial differential equations (PDEs). DTNN leverages the power of deep neural networks to approximate the solution for a class of quasi-linear parabolic PDEs. We demonstrate that DTNN significantly reduces the computational cost and speeds up the training process compared to other models in the literature. The results of our study indicate that DTNN architecture is promising for the fast and accurate solution of time-dependent PDEs in various scientific and engineering applications. The DTNN architecture addresses the pressing need for enhanced time considerations in the deeper layers of Artificial Neural Networks (ANNs), thereby improving convergence time for high-dimensional PDE solutions. This is achieved by integrating time into the hidden layers of the DTNN, demonstrating a marked improvement over existing ANN-based solutions regarding efficiency and speed.</div></div>","PeriodicalId":55496,"journal":{"name":"Applied Mathematics and Computation","volume":"488 ","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deep-time neural networks: An efficient approach for solving high-dimensional PDEs\",\"authors\":\"Ahmad Aghapour , Hamid Arian , Luis Seco\",\"doi\":\"10.1016/j.amc.2024.129117\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper presents the Deep-Time Neural Network (DTNN), an efficient and novel deep-learning approach for solving partial differential equations (PDEs). DTNN leverages the power of deep neural networks to approximate the solution for a class of quasi-linear parabolic PDEs. We demonstrate that DTNN significantly reduces the computational cost and speeds up the training process compared to other models in the literature. The results of our study indicate that DTNN architecture is promising for the fast and accurate solution of time-dependent PDEs in various scientific and engineering applications. The DTNN architecture addresses the pressing need for enhanced time considerations in the deeper layers of Artificial Neural Networks (ANNs), thereby improving convergence time for high-dimensional PDE solutions. This is achieved by integrating time into the hidden layers of the DTNN, demonstrating a marked improvement over existing ANN-based solutions regarding efficiency and speed.</div></div>\",\"PeriodicalId\":55496,\"journal\":{\"name\":\"Applied Mathematics and Computation\",\"volume\":\"488 \",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Mathematics and Computation\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0096300324005782\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics and Computation","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0096300324005782","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Deep-time neural networks: An efficient approach for solving high-dimensional PDEs
This paper presents the Deep-Time Neural Network (DTNN), an efficient and novel deep-learning approach for solving partial differential equations (PDEs). DTNN leverages the power of deep neural networks to approximate the solution for a class of quasi-linear parabolic PDEs. We demonstrate that DTNN significantly reduces the computational cost and speeds up the training process compared to other models in the literature. The results of our study indicate that DTNN architecture is promising for the fast and accurate solution of time-dependent PDEs in various scientific and engineering applications. The DTNN architecture addresses the pressing need for enhanced time considerations in the deeper layers of Artificial Neural Networks (ANNs), thereby improving convergence time for high-dimensional PDE solutions. This is achieved by integrating time into the hidden layers of the DTNN, demonstrating a marked improvement over existing ANN-based solutions regarding efficiency and speed.
期刊介绍:
Applied Mathematics and Computation addresses work at the interface between applied mathematics, numerical computation, and applications of systems – oriented ideas to the physical, biological, social, and behavioral sciences, and emphasizes papers of a computational nature focusing on new algorithms, their analysis and numerical results.
In addition to presenting research papers, Applied Mathematics and Computation publishes review articles and single–topics issues.