{"title":"设计用于新鲜农产品行业的连续等离子体活性水(PAW)消毒系统","authors":"N.N. Misra , Tejas Naladala , Khalid J. Alzahrani , V.P. Sreelakshmi , P.S. Negi","doi":"10.1016/j.ifset.2024.103845","DOIUrl":null,"url":null,"abstract":"<div><div>This study introduces an innovative, industrial-scale continuous Plasma Activated Water (PAW) system, specifically designed for the fresh produce industry and optimized for micro to small enterprises. The system leverages a novel non-uniform electrode design to enhance average field strength, driving the efficient generation of reactive oxygen and nitrogen species (RONS) for steady-state PAW production. Key components include a venturi bubble generator for optimized gas-liquid interaction and a plasma reactor integrated with a continuous spray and drying setup, enabling consistent PAW production and application. Our preliminary results indicate about 1.5 log<sub>10</sub> CFU/g decrease in microbial load on treated produce, which further decreased to 2.5 log<sub>10</sub> CFU/g towards the end of storage life for tomatoes, with 20 kV applied to the reactors and a total residence time of 20 min. An evaluation of the maximum energy consumption of system indicated a process cost contribution of less than $0.5 per ton of treated produce. The promising initial results, scalable design, cost-effectiveness and sustainability aspects make this technology suitable for improving food safety while reducing chemical usage.</div></div>","PeriodicalId":329,"journal":{"name":"Innovative Food Science & Emerging Technologies","volume":"97 ","pages":"Article 103845"},"PeriodicalIF":6.3000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design of a continuous plasma activated water (PAW) disinfection system for fresh produce industry\",\"authors\":\"N.N. Misra , Tejas Naladala , Khalid J. Alzahrani , V.P. Sreelakshmi , P.S. Negi\",\"doi\":\"10.1016/j.ifset.2024.103845\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study introduces an innovative, industrial-scale continuous Plasma Activated Water (PAW) system, specifically designed for the fresh produce industry and optimized for micro to small enterprises. The system leverages a novel non-uniform electrode design to enhance average field strength, driving the efficient generation of reactive oxygen and nitrogen species (RONS) for steady-state PAW production. Key components include a venturi bubble generator for optimized gas-liquid interaction and a plasma reactor integrated with a continuous spray and drying setup, enabling consistent PAW production and application. Our preliminary results indicate about 1.5 log<sub>10</sub> CFU/g decrease in microbial load on treated produce, which further decreased to 2.5 log<sub>10</sub> CFU/g towards the end of storage life for tomatoes, with 20 kV applied to the reactors and a total residence time of 20 min. An evaluation of the maximum energy consumption of system indicated a process cost contribution of less than $0.5 per ton of treated produce. The promising initial results, scalable design, cost-effectiveness and sustainability aspects make this technology suitable for improving food safety while reducing chemical usage.</div></div>\",\"PeriodicalId\":329,\"journal\":{\"name\":\"Innovative Food Science & Emerging Technologies\",\"volume\":\"97 \",\"pages\":\"Article 103845\"},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Innovative Food Science & Emerging Technologies\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1466856424002844\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"FOOD SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Innovative Food Science & Emerging Technologies","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1466856424002844","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
Design of a continuous plasma activated water (PAW) disinfection system for fresh produce industry
This study introduces an innovative, industrial-scale continuous Plasma Activated Water (PAW) system, specifically designed for the fresh produce industry and optimized for micro to small enterprises. The system leverages a novel non-uniform electrode design to enhance average field strength, driving the efficient generation of reactive oxygen and nitrogen species (RONS) for steady-state PAW production. Key components include a venturi bubble generator for optimized gas-liquid interaction and a plasma reactor integrated with a continuous spray and drying setup, enabling consistent PAW production and application. Our preliminary results indicate about 1.5 log10 CFU/g decrease in microbial load on treated produce, which further decreased to 2.5 log10 CFU/g towards the end of storage life for tomatoes, with 20 kV applied to the reactors and a total residence time of 20 min. An evaluation of the maximum energy consumption of system indicated a process cost contribution of less than $0.5 per ton of treated produce. The promising initial results, scalable design, cost-effectiveness and sustainability aspects make this technology suitable for improving food safety while reducing chemical usage.
期刊介绍:
Innovative Food Science and Emerging Technologies (IFSET) aims to provide the highest quality original contributions and few, mainly upon invitation, reviews on and highly innovative developments in food science and emerging food process technologies. The significance of the results either for the science community or for industrial R&D groups must be specified. Papers submitted must be of highest scientific quality and only those advancing current scientific knowledge and understanding or with technical relevance will be considered.