相变诱导吸积的非线性力学

IF 5 2区 工程技术 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Satya Prakash Pradhan , Arash Yavari
{"title":"相变诱导吸积的非线性力学","authors":"Satya Prakash Pradhan ,&nbsp;Arash Yavari","doi":"10.1016/j.jmps.2024.105888","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we formulate a continuum theory of solidification within the context of finite-strain coupled thermoelasticity. We aim to fill a gap in the existing literature, as the existing studies on solidification typically decouple the thermal problem (the classical Stefan’s problem) from the elasticity problem, and often limit themselves to linear elasticity with small strains. Treating solidification as an accretion problem, with the growth velocity correlated with the jump in the heat flux across the boundary, it presents an initial boundary-value problem (IBVP) over a domain whose boundary location is a priori unknown. This IBVP is solved numerically for the specific example of radially inward solidification in a spherical container. Several parametric studies are conducted to compare the numerical results with the rigid cases in the literature and gain insights into the role of elastic deformations in solidification.</div></div>","PeriodicalId":17331,"journal":{"name":"Journal of The Mechanics and Physics of Solids","volume":"193 ","pages":"Article 105888"},"PeriodicalIF":5.0000,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nonlinear mechanics of phase-change-induced accretion\",\"authors\":\"Satya Prakash Pradhan ,&nbsp;Arash Yavari\",\"doi\":\"10.1016/j.jmps.2024.105888\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper, we formulate a continuum theory of solidification within the context of finite-strain coupled thermoelasticity. We aim to fill a gap in the existing literature, as the existing studies on solidification typically decouple the thermal problem (the classical Stefan’s problem) from the elasticity problem, and often limit themselves to linear elasticity with small strains. Treating solidification as an accretion problem, with the growth velocity correlated with the jump in the heat flux across the boundary, it presents an initial boundary-value problem (IBVP) over a domain whose boundary location is a priori unknown. This IBVP is solved numerically for the specific example of radially inward solidification in a spherical container. Several parametric studies are conducted to compare the numerical results with the rigid cases in the literature and gain insights into the role of elastic deformations in solidification.</div></div>\",\"PeriodicalId\":17331,\"journal\":{\"name\":\"Journal of The Mechanics and Physics of Solids\",\"volume\":\"193 \",\"pages\":\"Article 105888\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2024-10-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of The Mechanics and Physics of Solids\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022509624003545\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The Mechanics and Physics of Solids","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022509624003545","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们在有限应变耦合热弹性的背景下提出了凝固的连续理论。我们的目标是填补现有文献的空白,因为现有的凝固研究通常将热问题(经典的斯特凡问题)与弹性问题脱钩,而且往往局限于小应变的线性弹性。将凝固视为一个增生问题,其增长速度与边界热通量的跃迁相关,它提出了一个边界位置先验未知的域上的初始边界值问题(IBVP)。针对球形容器中径向向内凝固的具体实例,对该 IBVP 进行了数值求解。为了将数值结果与文献中的刚性案例进行比较,并深入了解弹性变形在凝固过程中的作用,我们进行了多项参数研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Nonlinear mechanics of phase-change-induced accretion
In this paper, we formulate a continuum theory of solidification within the context of finite-strain coupled thermoelasticity. We aim to fill a gap in the existing literature, as the existing studies on solidification typically decouple the thermal problem (the classical Stefan’s problem) from the elasticity problem, and often limit themselves to linear elasticity with small strains. Treating solidification as an accretion problem, with the growth velocity correlated with the jump in the heat flux across the boundary, it presents an initial boundary-value problem (IBVP) over a domain whose boundary location is a priori unknown. This IBVP is solved numerically for the specific example of radially inward solidification in a spherical container. Several parametric studies are conducted to compare the numerical results with the rigid cases in the literature and gain insights into the role of elastic deformations in solidification.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of The Mechanics and Physics of Solids
Journal of The Mechanics and Physics of Solids 物理-材料科学:综合
CiteScore
9.80
自引率
9.40%
发文量
276
审稿时长
52 days
期刊介绍: The aim of Journal of The Mechanics and Physics of Solids is to publish research of the highest quality and of lasting significance on the mechanics of solids. The scope is broad, from fundamental concepts in mechanics to the analysis of novel phenomena and applications. Solids are interpreted broadly to include both hard and soft materials as well as natural and synthetic structures. The approach can be theoretical, experimental or computational.This research activity sits within engineering science and the allied areas of applied mathematics, materials science, bio-mechanics, applied physics, and geophysics. The Journal was founded in 1952 by Rodney Hill, who was its Editor-in-Chief until 1968. The topics of interest to the Journal evolve with developments in the subject but its basic ethos remains the same: to publish research of the highest quality relating to the mechanics of solids. Thus, emphasis is placed on the development of fundamental concepts of mechanics and novel applications of these concepts based on theoretical, experimental or computational approaches, drawing upon the various branches of engineering science and the allied areas within applied mathematics, materials science, structural engineering, applied physics, and geophysics. The main purpose of the Journal is to foster scientific understanding of the processes of deformation and mechanical failure of all solid materials, both technological and natural, and the connections between these processes and their underlying physical mechanisms. In this sense, the content of the Journal should reflect the current state of the discipline in analysis, experimental observation, and numerical simulation. In the interest of achieving this goal, authors are encouraged to consider the significance of their contributions for the field of mechanics and the implications of their results, in addition to describing the details of their work.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信