多维纳米颗粒三元碳酸盐相变材料热物理性质的实验增强研究

IF 6.3 2区 材料科学 Q2 ENERGY & FUELS
Meiyang Xu, Gaosheng Wei, Chao Huang, Xiaoze Du
{"title":"多维纳米颗粒三元碳酸盐相变材料热物理性质的实验增强研究","authors":"Meiyang Xu,&nbsp;Gaosheng Wei,&nbsp;Chao Huang,&nbsp;Xiaoze Du","doi":"10.1016/j.solmat.2024.113222","DOIUrl":null,"url":null,"abstract":"<div><div>Carbonates have great application potential as heat transfer and thermal energy storage media in the development of future phase change materials. This paper gives thermophysical properties enhancement study on ternary carbonates in liquid state by adding aluminum oxide nanoparticles, multi-walled carbon nanotubes, graphene nanosheets, and experimentally evaluate the performance strengthen ability of multi-dimensional nanoparticles. The thermal diffusivities and specific heats of the prepared samples by the water solution method are determined using the laser flash technique and the differential scanning calorimetry at liquid state, respectively. A thermogravimetric analyzer is deployed for evaluate the high-temperature thermal stability of the composite ternary carbonates. Scanning electron microscopy and Fourier transform infrared spectroscopy techniques are utilized to examine the surface morphologies and chemical structures of the samples. The results indicate that there is a cooperative reinforcement impact on the thermophysical properties of ternary carbonate by utilizing zero-dimensional Al<sub>2</sub>O<sub>3</sub> nanoparticles and two-dimensional graphene nanosheets, with a maximum improvement of 56.7 % for thermal conductivity, and 10.3 % for specific heat, which is apparently larger than adding any single nanoparticle. The composites exhibit superior thermal cycling stability after low-high temperature experiment, and samples can maintain thermal stability until 700 °C in the thermogravimetric analysis.</div></div>","PeriodicalId":429,"journal":{"name":"Solar Energy Materials and Solar Cells","volume":"278 ","pages":"Article 113222"},"PeriodicalIF":6.3000,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Experimental enhancement study of thermophysical properties of ternary carbonate phase change material with multi-dimensional nanoparticles\",\"authors\":\"Meiyang Xu,&nbsp;Gaosheng Wei,&nbsp;Chao Huang,&nbsp;Xiaoze Du\",\"doi\":\"10.1016/j.solmat.2024.113222\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Carbonates have great application potential as heat transfer and thermal energy storage media in the development of future phase change materials. This paper gives thermophysical properties enhancement study on ternary carbonates in liquid state by adding aluminum oxide nanoparticles, multi-walled carbon nanotubes, graphene nanosheets, and experimentally evaluate the performance strengthen ability of multi-dimensional nanoparticles. The thermal diffusivities and specific heats of the prepared samples by the water solution method are determined using the laser flash technique and the differential scanning calorimetry at liquid state, respectively. A thermogravimetric analyzer is deployed for evaluate the high-temperature thermal stability of the composite ternary carbonates. Scanning electron microscopy and Fourier transform infrared spectroscopy techniques are utilized to examine the surface morphologies and chemical structures of the samples. The results indicate that there is a cooperative reinforcement impact on the thermophysical properties of ternary carbonate by utilizing zero-dimensional Al<sub>2</sub>O<sub>3</sub> nanoparticles and two-dimensional graphene nanosheets, with a maximum improvement of 56.7 % for thermal conductivity, and 10.3 % for specific heat, which is apparently larger than adding any single nanoparticle. The composites exhibit superior thermal cycling stability after low-high temperature experiment, and samples can maintain thermal stability until 700 °C in the thermogravimetric analysis.</div></div>\",\"PeriodicalId\":429,\"journal\":{\"name\":\"Solar Energy Materials and Solar Cells\",\"volume\":\"278 \",\"pages\":\"Article 113222\"},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2024-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Solar Energy Materials and Solar Cells\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0927024824005348\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solar Energy Materials and Solar Cells","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0927024824005348","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

碳酸盐作为传热和热能储存介质在未来相变材料的发展中具有巨大的应用潜力。本文通过添加氧化铝纳米粒子、多壁碳纳米管、石墨烯纳米片,对液态三元碳酸盐进行了热物理性质增强研究,并通过实验评估了多维纳米粒子的性能增强能力。利用激光闪烁技术和差示扫描量热法分别测定了水溶液法制备的样品在液态下的热扩散率和比热。热重分析仪用于评估复合三元碳酸盐的高温热稳定性。扫描电子显微镜和傅立叶变换红外光谱技术用于研究样品的表面形态和化学结构。结果表明,利用零维 Al2O3 纳米粒子和二维石墨烯纳米片对三元碳酸盐的热物理性质有协同增强作用,热导率最大提高了 56.7%,比热提高了 10.3%,这显然大于添加任何单一纳米粒子的效果。在低温-高温实验后,复合材料表现出卓越的热循环稳定性,在热重分析中,样品的热稳定性可保持到 700 ℃。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Experimental enhancement study of thermophysical properties of ternary carbonate phase change material with multi-dimensional nanoparticles
Carbonates have great application potential as heat transfer and thermal energy storage media in the development of future phase change materials. This paper gives thermophysical properties enhancement study on ternary carbonates in liquid state by adding aluminum oxide nanoparticles, multi-walled carbon nanotubes, graphene nanosheets, and experimentally evaluate the performance strengthen ability of multi-dimensional nanoparticles. The thermal diffusivities and specific heats of the prepared samples by the water solution method are determined using the laser flash technique and the differential scanning calorimetry at liquid state, respectively. A thermogravimetric analyzer is deployed for evaluate the high-temperature thermal stability of the composite ternary carbonates. Scanning electron microscopy and Fourier transform infrared spectroscopy techniques are utilized to examine the surface morphologies and chemical structures of the samples. The results indicate that there is a cooperative reinforcement impact on the thermophysical properties of ternary carbonate by utilizing zero-dimensional Al2O3 nanoparticles and two-dimensional graphene nanosheets, with a maximum improvement of 56.7 % for thermal conductivity, and 10.3 % for specific heat, which is apparently larger than adding any single nanoparticle. The composites exhibit superior thermal cycling stability after low-high temperature experiment, and samples can maintain thermal stability until 700 °C in the thermogravimetric analysis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Solar Energy Materials and Solar Cells
Solar Energy Materials and Solar Cells 工程技术-材料科学:综合
CiteScore
12.60
自引率
11.60%
发文量
513
审稿时长
47 days
期刊介绍: Solar Energy Materials & Solar Cells is intended as a vehicle for the dissemination of research results on materials science and technology related to photovoltaic, photothermal and photoelectrochemical solar energy conversion. Materials science is taken in the broadest possible sense and encompasses physics, chemistry, optics, materials fabrication and analysis for all types of materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信