ChengLu Wang , JiaCheng Zhang , Fang Gao , Min Zheng , XiaoHua Fu , KeBing Yang
{"title":"调查 COVID-19 对男性吸烟者精子的影响:前瞻性蛋白质组和代谢组综合研究","authors":"ChengLu Wang , JiaCheng Zhang , Fang Gao , Min Zheng , XiaoHua Fu , KeBing Yang","doi":"10.1016/j.reprotox.2024.108734","DOIUrl":null,"url":null,"abstract":"<div><div>Notable variations in semen parameters among non-smoking males have been documented post-COVID-19 pandemic. The role of smoking as a significant contributing factor to male infertility has been substantiated. Does the combined effect of smoking and SARS-CoV-2 infection impact male reproductive function? A prospective descriptive cohort study was performed using data from 90 smoking and 90 non-smoking males before and after coronavirus infection in a single center over a period of 3 months. Semen samples were collected before and within 15 days after COVID-19 infection, ensuring no more than three months elapsed between the two collections. The semen parameters evaluated included volume, concentration, progressive motility, normal morphology, and DNA fragmentation rate. Proteomic and metabolomic studies were further used to explore the differences between groups. Both non-smokers and smokers exhibited a marked reduction in sperm concentration, progressive motility, and normal morphology rate. Additionally, an increase in sperm DNA fragmentation index was noted for non-smokers and smokers. In the non-smoking group, dysregulation proteins including SEMG1, SEMG2 and DNAH5, and metabolites including L-glutamine, cis-9-Palmitoleic acid and Linoleamide were observed. In smokers, dysregulation proteins including SMCP, ROPN1B and IZUMO4, alongside metabolites including carnitine, gamma-Glutamylglutamic acid, and hypoxanthine were found. Comparative analysis between smoking and non-smoking patients post-COVID-19 also revealed significant differences in semen concentration, morphology and sperm DNA fragmentation rate. Dysregulated proteins including HSPA5, HSPA2 and PGK2, and metabolites such as acetylcarnitine, oxaloacetate and nicotinate were associated with impaired sperm function. Our study demonstrates that the virus also significantly compromises sperm quality in smoking males, who experience more pronounced declines post-infection compared to their non-smoking counterparts. This research underscores the necessity for comprehensive fertility assessments for smoking males after recovering from COVID-19.</div></div>","PeriodicalId":21137,"journal":{"name":"Reproductive toxicology","volume":"130 ","pages":"Article 108734"},"PeriodicalIF":3.3000,"publicationDate":"2024-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigating the effects of COVID-19 on sperm in male smokers: A prospective integrated proteomic and metabolomic study\",\"authors\":\"ChengLu Wang , JiaCheng Zhang , Fang Gao , Min Zheng , XiaoHua Fu , KeBing Yang\",\"doi\":\"10.1016/j.reprotox.2024.108734\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Notable variations in semen parameters among non-smoking males have been documented post-COVID-19 pandemic. The role of smoking as a significant contributing factor to male infertility has been substantiated. Does the combined effect of smoking and SARS-CoV-2 infection impact male reproductive function? A prospective descriptive cohort study was performed using data from 90 smoking and 90 non-smoking males before and after coronavirus infection in a single center over a period of 3 months. Semen samples were collected before and within 15 days after COVID-19 infection, ensuring no more than three months elapsed between the two collections. The semen parameters evaluated included volume, concentration, progressive motility, normal morphology, and DNA fragmentation rate. Proteomic and metabolomic studies were further used to explore the differences between groups. Both non-smokers and smokers exhibited a marked reduction in sperm concentration, progressive motility, and normal morphology rate. Additionally, an increase in sperm DNA fragmentation index was noted for non-smokers and smokers. In the non-smoking group, dysregulation proteins including SEMG1, SEMG2 and DNAH5, and metabolites including L-glutamine, cis-9-Palmitoleic acid and Linoleamide were observed. In smokers, dysregulation proteins including SMCP, ROPN1B and IZUMO4, alongside metabolites including carnitine, gamma-Glutamylglutamic acid, and hypoxanthine were found. Comparative analysis between smoking and non-smoking patients post-COVID-19 also revealed significant differences in semen concentration, morphology and sperm DNA fragmentation rate. Dysregulated proteins including HSPA5, HSPA2 and PGK2, and metabolites such as acetylcarnitine, oxaloacetate and nicotinate were associated with impaired sperm function. Our study demonstrates that the virus also significantly compromises sperm quality in smoking males, who experience more pronounced declines post-infection compared to their non-smoking counterparts. This research underscores the necessity for comprehensive fertility assessments for smoking males after recovering from COVID-19.</div></div>\",\"PeriodicalId\":21137,\"journal\":{\"name\":\"Reproductive toxicology\",\"volume\":\"130 \",\"pages\":\"Article 108734\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-10-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Reproductive toxicology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0890623824002016\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"REPRODUCTIVE BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reproductive toxicology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0890623824002016","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"REPRODUCTIVE BIOLOGY","Score":null,"Total":0}
Investigating the effects of COVID-19 on sperm in male smokers: A prospective integrated proteomic and metabolomic study
Notable variations in semen parameters among non-smoking males have been documented post-COVID-19 pandemic. The role of smoking as a significant contributing factor to male infertility has been substantiated. Does the combined effect of smoking and SARS-CoV-2 infection impact male reproductive function? A prospective descriptive cohort study was performed using data from 90 smoking and 90 non-smoking males before and after coronavirus infection in a single center over a period of 3 months. Semen samples were collected before and within 15 days after COVID-19 infection, ensuring no more than three months elapsed between the two collections. The semen parameters evaluated included volume, concentration, progressive motility, normal morphology, and DNA fragmentation rate. Proteomic and metabolomic studies were further used to explore the differences between groups. Both non-smokers and smokers exhibited a marked reduction in sperm concentration, progressive motility, and normal morphology rate. Additionally, an increase in sperm DNA fragmentation index was noted for non-smokers and smokers. In the non-smoking group, dysregulation proteins including SEMG1, SEMG2 and DNAH5, and metabolites including L-glutamine, cis-9-Palmitoleic acid and Linoleamide were observed. In smokers, dysregulation proteins including SMCP, ROPN1B and IZUMO4, alongside metabolites including carnitine, gamma-Glutamylglutamic acid, and hypoxanthine were found. Comparative analysis between smoking and non-smoking patients post-COVID-19 also revealed significant differences in semen concentration, morphology and sperm DNA fragmentation rate. Dysregulated proteins including HSPA5, HSPA2 and PGK2, and metabolites such as acetylcarnitine, oxaloacetate and nicotinate were associated with impaired sperm function. Our study demonstrates that the virus also significantly compromises sperm quality in smoking males, who experience more pronounced declines post-infection compared to their non-smoking counterparts. This research underscores the necessity for comprehensive fertility assessments for smoking males after recovering from COVID-19.
期刊介绍:
Drawing from a large number of disciplines, Reproductive Toxicology publishes timely, original research on the influence of chemical and physical agents on reproduction. Written by and for obstetricians, pediatricians, embryologists, teratologists, geneticists, toxicologists, andrologists, and others interested in detecting potential reproductive hazards, the journal is a forum for communication among researchers and practitioners. Articles focus on the application of in vitro, animal and clinical research to the practice of clinical medicine.
All aspects of reproduction are within the scope of Reproductive Toxicology, including the formation and maturation of male and female gametes, sexual function, the events surrounding the fusion of gametes and the development of the fertilized ovum, nourishment and transport of the conceptus within the genital tract, implantation, embryogenesis, intrauterine growth, placentation and placental function, parturition, lactation and neonatal survival. Adverse reproductive effects in males will be considered as significant as adverse effects occurring in females. To provide a balanced presentation of approaches, equal emphasis will be given to clinical and animal or in vitro work. Typical end points that will be studied by contributors include infertility, sexual dysfunction, spontaneous abortion, malformations, abnormal histogenesis, stillbirth, intrauterine growth retardation, prematurity, behavioral abnormalities, and perinatal mortality.