{"title":"使用同态加密和无辅助数据的弱物理不可克隆函数的物联网设备量子安全认证方案","authors":"Roberto Román, Rosario Arjona, Iluminada Baturone","doi":"10.1016/j.iot.2024.101389","DOIUrl":null,"url":null,"abstract":"<div><div>Physical Unclonable Functions (PUFs) are widely used to authenticate electronic devices because they take advantage of random variations in the manufacturing process that are unique to each device and cannot be cloned. Therefore, each device can be uniquely identified and counterfeit devices can be detected. Weak PUFs, which support a relatively small number of challenge-response pairs (CRPs), are simple and easy to construct. Device authentication with weak PUFs typically uses helper data to obfuscate and recover a cryptographic key that is then required by a cryptographic authentication scheme. However, these schemes are vulnerable to helper-data attacks and many of them do not protect conveniently the PUF responses, which are sensitive data, as well as are not resistant to attacks performed by quantum computers. This paper proposes an authentication scheme that avoids the aforementioned weaknesses by not using helper data, protecting the PUF response with a quantum-safe homomorphic encryption, and by using a two-server setup. Specifically, the CRYSTALS-Kyber public key cryptographic algorithm is used for its quantum resistance and suitability for resource-constrained Internet-of-Things (IoT) devices. The practicality of the proposal was tested on an ESP32 microcontroller using its internal SRAM as a SRAM PUF. For PUF responses of 512 bits, the encryption execution time ranges from 16.41 ms to 41.08 ms, depending on the desired level of security. In terms of memory, the device only needs to store between 800 and 1,568 bytes. This makes the solution post-quantum secure, lightweight and affordable for IoT devices with limited computing, memory, and power resources.</div></div>","PeriodicalId":29968,"journal":{"name":"Internet of Things","volume":"28 ","pages":"Article 101389"},"PeriodicalIF":6.0000,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A quantum-safe authentication scheme for IoT devices using homomorphic encryption and weak physical unclonable functions with no helper data\",\"authors\":\"Roberto Román, Rosario Arjona, Iluminada Baturone\",\"doi\":\"10.1016/j.iot.2024.101389\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Physical Unclonable Functions (PUFs) are widely used to authenticate electronic devices because they take advantage of random variations in the manufacturing process that are unique to each device and cannot be cloned. Therefore, each device can be uniquely identified and counterfeit devices can be detected. Weak PUFs, which support a relatively small number of challenge-response pairs (CRPs), are simple and easy to construct. Device authentication with weak PUFs typically uses helper data to obfuscate and recover a cryptographic key that is then required by a cryptographic authentication scheme. However, these schemes are vulnerable to helper-data attacks and many of them do not protect conveniently the PUF responses, which are sensitive data, as well as are not resistant to attacks performed by quantum computers. This paper proposes an authentication scheme that avoids the aforementioned weaknesses by not using helper data, protecting the PUF response with a quantum-safe homomorphic encryption, and by using a two-server setup. Specifically, the CRYSTALS-Kyber public key cryptographic algorithm is used for its quantum resistance and suitability for resource-constrained Internet-of-Things (IoT) devices. The practicality of the proposal was tested on an ESP32 microcontroller using its internal SRAM as a SRAM PUF. For PUF responses of 512 bits, the encryption execution time ranges from 16.41 ms to 41.08 ms, depending on the desired level of security. In terms of memory, the device only needs to store between 800 and 1,568 bytes. This makes the solution post-quantum secure, lightweight and affordable for IoT devices with limited computing, memory, and power resources.</div></div>\",\"PeriodicalId\":29968,\"journal\":{\"name\":\"Internet of Things\",\"volume\":\"28 \",\"pages\":\"Article 101389\"},\"PeriodicalIF\":6.0000,\"publicationDate\":\"2024-10-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Internet of Things\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2542660524003305\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Internet of Things","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2542660524003305","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
A quantum-safe authentication scheme for IoT devices using homomorphic encryption and weak physical unclonable functions with no helper data
Physical Unclonable Functions (PUFs) are widely used to authenticate electronic devices because they take advantage of random variations in the manufacturing process that are unique to each device and cannot be cloned. Therefore, each device can be uniquely identified and counterfeit devices can be detected. Weak PUFs, which support a relatively small number of challenge-response pairs (CRPs), are simple and easy to construct. Device authentication with weak PUFs typically uses helper data to obfuscate and recover a cryptographic key that is then required by a cryptographic authentication scheme. However, these schemes are vulnerable to helper-data attacks and many of them do not protect conveniently the PUF responses, which are sensitive data, as well as are not resistant to attacks performed by quantum computers. This paper proposes an authentication scheme that avoids the aforementioned weaknesses by not using helper data, protecting the PUF response with a quantum-safe homomorphic encryption, and by using a two-server setup. Specifically, the CRYSTALS-Kyber public key cryptographic algorithm is used for its quantum resistance and suitability for resource-constrained Internet-of-Things (IoT) devices. The practicality of the proposal was tested on an ESP32 microcontroller using its internal SRAM as a SRAM PUF. For PUF responses of 512 bits, the encryption execution time ranges from 16.41 ms to 41.08 ms, depending on the desired level of security. In terms of memory, the device only needs to store between 800 and 1,568 bytes. This makes the solution post-quantum secure, lightweight and affordable for IoT devices with limited computing, memory, and power resources.
期刊介绍:
Internet of Things; Engineering Cyber Physical Human Systems is a comprehensive journal encouraging cross collaboration between researchers, engineers and practitioners in the field of IoT & Cyber Physical Human Systems. The journal offers a unique platform to exchange scientific information on the entire breadth of technology, science, and societal applications of the IoT.
The journal will place a high priority on timely publication, and provide a home for high quality.
Furthermore, IOT is interested in publishing topical Special Issues on any aspect of IOT.