用于磁流体动力湍流直接数值模拟的高阶有限差分求解器

IF 7.2 2区 物理与天体物理 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Jian Fang , Sylvain Laizet , Alex Skillen
{"title":"用于磁流体动力湍流直接数值模拟的高阶有限差分求解器","authors":"Jian Fang ,&nbsp;Sylvain Laizet ,&nbsp;Alex Skillen","doi":"10.1016/j.cpc.2024.109400","DOIUrl":null,"url":null,"abstract":"<div><div>This paper presents the development and validation of a Magnetohydrodynamics (MHD) module integrated into the Xcompact3d framework, an open-source high-order finite-difference suite of solvers designed to study turbulent flows on supercomputers. Leveraging the Fast Fourier Transform library already implemented in Xcompact3d, alongside sixth-order compact finite-difference schemes and a direct spectral Poisson solver, both the induction and potential-based MHD equations can be efficiently solved at scale on CPU-based supercomputers for fluids with strong and weak magnetic field, respectively. Validation of the MHD solver is conducted against established benchmarks, including Orszag-Tang vortex and MHD channel flows, demonstrating the module's capability to accurately capture complex MHD phenomena, providing a powerful tool for research in both engineering and astrophysics. The scalability of the Xcompact3d framework remains intact with the incorporation of the MHD module, ensuring efficient performance on modern high-performance clusters. This paper also presents new findings on the evolution of the Taylor-Green vortex under an external magnetic field for different flow regimes.</div></div>","PeriodicalId":285,"journal":{"name":"Computer Physics Communications","volume":"307 ","pages":"Article 109400"},"PeriodicalIF":7.2000,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A high-order finite-difference solver for direct numerical simulations of magnetohydrodynamic turbulence\",\"authors\":\"Jian Fang ,&nbsp;Sylvain Laizet ,&nbsp;Alex Skillen\",\"doi\":\"10.1016/j.cpc.2024.109400\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper presents the development and validation of a Magnetohydrodynamics (MHD) module integrated into the Xcompact3d framework, an open-source high-order finite-difference suite of solvers designed to study turbulent flows on supercomputers. Leveraging the Fast Fourier Transform library already implemented in Xcompact3d, alongside sixth-order compact finite-difference schemes and a direct spectral Poisson solver, both the induction and potential-based MHD equations can be efficiently solved at scale on CPU-based supercomputers for fluids with strong and weak magnetic field, respectively. Validation of the MHD solver is conducted against established benchmarks, including Orszag-Tang vortex and MHD channel flows, demonstrating the module's capability to accurately capture complex MHD phenomena, providing a powerful tool for research in both engineering and astrophysics. The scalability of the Xcompact3d framework remains intact with the incorporation of the MHD module, ensuring efficient performance on modern high-performance clusters. This paper also presents new findings on the evolution of the Taylor-Green vortex under an external magnetic field for different flow regimes.</div></div>\",\"PeriodicalId\":285,\"journal\":{\"name\":\"Computer Physics Communications\",\"volume\":\"307 \",\"pages\":\"Article 109400\"},\"PeriodicalIF\":7.2000,\"publicationDate\":\"2024-10-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Physics Communications\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0010465524003230\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Physics Communications","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0010465524003230","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了集成到 Xcompact3d 框架中的磁流体动力学(MHD)模块的开发和验证情况,Xcompact3d 框架是一个开源的高阶有限差分求解器套件,旨在研究超级计算机上的湍流。利用 Xcompact3d 中已经实现的快速傅立叶变换库、六阶紧凑有限差分方案和直接谱泊松求解器,可以在基于 CPU 的超级计算机上高效求解基于感应和电势的 MHD 方程,分别用于具有强磁场和弱磁场的流体。MHD 求解器根据既定基准(包括 Orszag-Tang 涡流和 MHD 通道流)进行了验证,证明该模块能够准确捕捉复杂的 MHD 现象,为工程和天体物理学研究提供了强大的工具。加入 MHD 模块后,Xcompact3d 框架的可扩展性保持不变,确保了在现代高性能集群上的高效性能。本文还介绍了泰勒-格林涡旋在外部磁场作用下不同流动状态下的演变过程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A high-order finite-difference solver for direct numerical simulations of magnetohydrodynamic turbulence
This paper presents the development and validation of a Magnetohydrodynamics (MHD) module integrated into the Xcompact3d framework, an open-source high-order finite-difference suite of solvers designed to study turbulent flows on supercomputers. Leveraging the Fast Fourier Transform library already implemented in Xcompact3d, alongside sixth-order compact finite-difference schemes and a direct spectral Poisson solver, both the induction and potential-based MHD equations can be efficiently solved at scale on CPU-based supercomputers for fluids with strong and weak magnetic field, respectively. Validation of the MHD solver is conducted against established benchmarks, including Orszag-Tang vortex and MHD channel flows, demonstrating the module's capability to accurately capture complex MHD phenomena, providing a powerful tool for research in both engineering and astrophysics. The scalability of the Xcompact3d framework remains intact with the incorporation of the MHD module, ensuring efficient performance on modern high-performance clusters. This paper also presents new findings on the evolution of the Taylor-Green vortex under an external magnetic field for different flow regimes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computer Physics Communications
Computer Physics Communications 物理-计算机:跨学科应用
CiteScore
12.10
自引率
3.20%
发文量
287
审稿时长
5.3 months
期刊介绍: The focus of CPC is on contemporary computational methods and techniques and their implementation, the effectiveness of which will normally be evidenced by the author(s) within the context of a substantive problem in physics. Within this setting CPC publishes two types of paper. Computer Programs in Physics (CPiP) These papers describe significant computer programs to be archived in the CPC Program Library which is held in the Mendeley Data repository. The submitted software must be covered by an approved open source licence. Papers and associated computer programs that address a problem of contemporary interest in physics that cannot be solved by current software are particularly encouraged. Computational Physics Papers (CP) These are research papers in, but are not limited to, the following themes across computational physics and related disciplines. mathematical and numerical methods and algorithms; computational models including those associated with the design, control and analysis of experiments; and algebraic computation. Each will normally include software implementation and performance details. The software implementation should, ideally, be available via GitHub, Zenodo or an institutional repository.In addition, research papers on the impact of advanced computer architecture and special purpose computers on computing in the physical sciences and software topics related to, and of importance in, the physical sciences may be considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信