关于拉特利夫-拉什过滤、还原数和 m 初等理想的推定数的说明

IF 0.7 2区 数学 Q2 MATHEMATICS
Mousumi Mandal, Shruti Priya
{"title":"关于拉特利夫-拉什过滤、还原数和 m 初等理想的推定数的说明","authors":"Mousumi Mandal,&nbsp;Shruti Priya","doi":"10.1016/j.jpaa.2024.107822","DOIUrl":null,"url":null,"abstract":"<div><div>Let <span><math><mo>(</mo><mi>R</mi><mo>,</mo><mi>m</mi><mo>)</mo></math></span> be a Cohen-Macaulay local ring of dimension <span><math><mi>d</mi><mo>≥</mo><mn>2</mn></math></span>, and <em>I</em> an <span><math><mi>m</mi></math></span>-primary ideal. Let <span><math><mi>r</mi><mo>(</mo><mi>I</mi><mo>)</mo></math></span> be the reduction number of <em>I</em>, <span><math><mi>n</mi><mo>(</mo><mi>I</mi><mo>)</mo></math></span> the postulation number and <span><math><mi>ρ</mi><mo>(</mo><mi>I</mi><mo>)</mo></math></span> the stability index of the Ratliff-Rush filtration with respect to <em>I</em>. We prove that for <span><math><mi>d</mi><mo>=</mo><mn>2</mn></math></span>, if <span><math><mi>n</mi><mo>(</mo><mi>I</mi><mo>)</mo><mo>=</mo><mi>ρ</mi><mo>(</mo><mi>I</mi><mo>)</mo><mo>−</mo><mn>1</mn></math></span>, then <span><math><mi>r</mi><mo>(</mo><mi>I</mi><mo>)</mo><mo>≤</mo><mi>n</mi><mo>(</mo><mi>I</mi><mo>)</mo><mo>+</mo><mn>2</mn></math></span>, and if <span><math><mi>n</mi><mo>(</mo><mi>I</mi><mo>)</mo><mo>≠</mo><mi>ρ</mi><mo>(</mo><mi>I</mi><mo>)</mo><mo>−</mo><mn>1</mn></math></span>, then <span><math><mi>r</mi><mo>(</mo><mi>I</mi><mo>)</mo><mo>≥</mo><mi>n</mi><mo>(</mo><mi>I</mi><mo>)</mo><mo>+</mo><mn>2</mn></math></span>. For <span><math><mi>d</mi><mo>≥</mo><mn>3</mn></math></span>, assuming <em>I</em> is integrally closed, <span><math><mi>depth</mi><mspace></mspace><mi>gr</mi><mo>(</mo><mi>I</mi><mo>)</mo><mo>=</mo><mi>d</mi><mo>−</mo><mn>2</mn></math></span>, and <span><math><mi>n</mi><mo>(</mo><mi>I</mi><mo>)</mo><mo>=</mo><mo>−</mo><mo>(</mo><mi>d</mi><mo>−</mo><mn>3</mn><mo>)</mo></math></span>, we prove that <span><math><mi>r</mi><mo>(</mo><mi>I</mi><mo>)</mo><mo>≥</mo><mi>n</mi><mo>(</mo><mi>I</mi><mo>)</mo><mo>+</mo><mi>d</mi></math></span>. Our main result generalizes a result by Marley on the relation between the Hilbert-Samuel function and the Hilbert-Samuel polynomial by relaxing the condition on the depth of the associated graded ring to the good behavior of the Ratliff-Rush filtration with respect to <em>I</em> mod a superficial sequence. From this result, it follows that for Cohen-Macaulay local rings of dimension <span><math><mi>d</mi><mo>≥</mo><mn>2</mn></math></span>, if <span><math><msub><mrow><mi>P</mi></mrow><mrow><mi>I</mi></mrow></msub><mo>(</mo><mi>k</mi><mo>)</mo><mo>=</mo><msub><mrow><mi>H</mi></mrow><mrow><mi>I</mi></mrow></msub><mo>(</mo><mi>k</mi><mo>)</mo></math></span> for some <span><math><mi>k</mi><mo>≥</mo><mi>ρ</mi><mo>(</mo><mi>I</mi><mo>)</mo></math></span>, then <span><math><msub><mrow><mi>P</mi></mrow><mrow><mi>I</mi></mrow></msub><mo>(</mo><mi>n</mi><mo>)</mo><mo>=</mo><msub><mrow><mi>H</mi></mrow><mrow><mi>I</mi></mrow></msub><mo>(</mo><mi>n</mi><mo>)</mo></math></span> for all <span><math><mi>n</mi><mo>≥</mo><mi>k</mi></math></span>.</div></div>","PeriodicalId":54770,"journal":{"name":"Journal of Pure and Applied Algebra","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A note on Ratliff-Rush filtration, reduction number and postulation number of m-primary ideals\",\"authors\":\"Mousumi Mandal,&nbsp;Shruti Priya\",\"doi\":\"10.1016/j.jpaa.2024.107822\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Let <span><math><mo>(</mo><mi>R</mi><mo>,</mo><mi>m</mi><mo>)</mo></math></span> be a Cohen-Macaulay local ring of dimension <span><math><mi>d</mi><mo>≥</mo><mn>2</mn></math></span>, and <em>I</em> an <span><math><mi>m</mi></math></span>-primary ideal. Let <span><math><mi>r</mi><mo>(</mo><mi>I</mi><mo>)</mo></math></span> be the reduction number of <em>I</em>, <span><math><mi>n</mi><mo>(</mo><mi>I</mi><mo>)</mo></math></span> the postulation number and <span><math><mi>ρ</mi><mo>(</mo><mi>I</mi><mo>)</mo></math></span> the stability index of the Ratliff-Rush filtration with respect to <em>I</em>. We prove that for <span><math><mi>d</mi><mo>=</mo><mn>2</mn></math></span>, if <span><math><mi>n</mi><mo>(</mo><mi>I</mi><mo>)</mo><mo>=</mo><mi>ρ</mi><mo>(</mo><mi>I</mi><mo>)</mo><mo>−</mo><mn>1</mn></math></span>, then <span><math><mi>r</mi><mo>(</mo><mi>I</mi><mo>)</mo><mo>≤</mo><mi>n</mi><mo>(</mo><mi>I</mi><mo>)</mo><mo>+</mo><mn>2</mn></math></span>, and if <span><math><mi>n</mi><mo>(</mo><mi>I</mi><mo>)</mo><mo>≠</mo><mi>ρ</mi><mo>(</mo><mi>I</mi><mo>)</mo><mo>−</mo><mn>1</mn></math></span>, then <span><math><mi>r</mi><mo>(</mo><mi>I</mi><mo>)</mo><mo>≥</mo><mi>n</mi><mo>(</mo><mi>I</mi><mo>)</mo><mo>+</mo><mn>2</mn></math></span>. For <span><math><mi>d</mi><mo>≥</mo><mn>3</mn></math></span>, assuming <em>I</em> is integrally closed, <span><math><mi>depth</mi><mspace></mspace><mi>gr</mi><mo>(</mo><mi>I</mi><mo>)</mo><mo>=</mo><mi>d</mi><mo>−</mo><mn>2</mn></math></span>, and <span><math><mi>n</mi><mo>(</mo><mi>I</mi><mo>)</mo><mo>=</mo><mo>−</mo><mo>(</mo><mi>d</mi><mo>−</mo><mn>3</mn><mo>)</mo></math></span>, we prove that <span><math><mi>r</mi><mo>(</mo><mi>I</mi><mo>)</mo><mo>≥</mo><mi>n</mi><mo>(</mo><mi>I</mi><mo>)</mo><mo>+</mo><mi>d</mi></math></span>. Our main result generalizes a result by Marley on the relation between the Hilbert-Samuel function and the Hilbert-Samuel polynomial by relaxing the condition on the depth of the associated graded ring to the good behavior of the Ratliff-Rush filtration with respect to <em>I</em> mod a superficial sequence. From this result, it follows that for Cohen-Macaulay local rings of dimension <span><math><mi>d</mi><mo>≥</mo><mn>2</mn></math></span>, if <span><math><msub><mrow><mi>P</mi></mrow><mrow><mi>I</mi></mrow></msub><mo>(</mo><mi>k</mi><mo>)</mo><mo>=</mo><msub><mrow><mi>H</mi></mrow><mrow><mi>I</mi></mrow></msub><mo>(</mo><mi>k</mi><mo>)</mo></math></span> for some <span><math><mi>k</mi><mo>≥</mo><mi>ρ</mi><mo>(</mo><mi>I</mi><mo>)</mo></math></span>, then <span><math><msub><mrow><mi>P</mi></mrow><mrow><mi>I</mi></mrow></msub><mo>(</mo><mi>n</mi><mo>)</mo><mo>=</mo><msub><mrow><mi>H</mi></mrow><mrow><mi>I</mi></mrow></msub><mo>(</mo><mi>n</mi><mo>)</mo></math></span> for all <span><math><mi>n</mi><mo>≥</mo><mi>k</mi></math></span>.</div></div>\",\"PeriodicalId\":54770,\"journal\":{\"name\":\"Journal of Pure and Applied Algebra\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2024-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Pure and Applied Algebra\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022404924002196\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pure and Applied Algebra","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022404924002196","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

设 (R,m) 是维数 d≥2 的科恩-麦考莱局部环,I 是一个 m 初等理想。我们将证明,对于 d=2,如果 n(I)=ρ(I)-1,那么 r(I)≤n(I)+2;如果 n(I)≠ρ(I)-1,那么 r(I)≥n(I)+2。对于 d≥3,假设 I 是整闭的,depthgr(I)=d-2,n(I)=-(d-3),我们证明 r(I)≥n(I)+d。我们的主要结果概括了马利关于希尔伯特-萨缪尔函数和希尔伯特-萨缪尔多项式之间关系的结果,把相关分级环的深度条件放宽到了拉特利夫-拉什滤波关于 I mod a superficial sequence 的良好行为。从这个结果可以得出,对于维数 d≥2 的科恩-麦考莱局部环,如果对于某个 k≥ρ(I),PI(k)=HI(k),那么对于所有 n≥k,PI(n)=HI(n)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A note on Ratliff-Rush filtration, reduction number and postulation number of m-primary ideals
Let (R,m) be a Cohen-Macaulay local ring of dimension d2, and I an m-primary ideal. Let r(I) be the reduction number of I, n(I) the postulation number and ρ(I) the stability index of the Ratliff-Rush filtration with respect to I. We prove that for d=2, if n(I)=ρ(I)1, then r(I)n(I)+2, and if n(I)ρ(I)1, then r(I)n(I)+2. For d3, assuming I is integrally closed, depthgr(I)=d2, and n(I)=(d3), we prove that r(I)n(I)+d. Our main result generalizes a result by Marley on the relation between the Hilbert-Samuel function and the Hilbert-Samuel polynomial by relaxing the condition on the depth of the associated graded ring to the good behavior of the Ratliff-Rush filtration with respect to I mod a superficial sequence. From this result, it follows that for Cohen-Macaulay local rings of dimension d2, if PI(k)=HI(k) for some kρ(I), then PI(n)=HI(n) for all nk.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.70
自引率
12.50%
发文量
225
审稿时长
17 days
期刊介绍: The Journal of Pure and Applied Algebra concentrates on that part of algebra likely to be of general mathematical interest: algebraic results with immediate applications, and the development of algebraic theories of sufficiently general relevance to allow for future applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信