Jingxiu Tian , Li-ang Zhu , Hongshun Miao , Xiangxin Li , Yan Liu
{"title":"镁取代镍在 O3-NaNi1/3Fe1/3Mn1/3O2 上的位置对阴极材料结构稳定性的影响","authors":"Jingxiu Tian , Li-ang Zhu , Hongshun Miao , Xiangxin Li , Yan Liu","doi":"10.1016/j.ssi.2024.116718","DOIUrl":null,"url":null,"abstract":"<div><div>O3-NaNi<sub>1/3</sub>Fe<sub>1/3</sub>Mn<sub>1/3</sub>O<sub>2</sub> (NaNFM) materials are susceptible to complex phase transitions during electrical cycling leading to poor structural, capacity retention and multiplicity properties. These drawbacks hinder the application of NaNFM in sodium-ion batteries. Here, Mg<sup>2+</sup> with larger ionic radius was used to dope its transition metal layer Ni site. The effects of Mg<sup>2+</sup> doped NaNFM crystal structure and transition metal valence states on its electrochemical properties were investigated by XRD, SEM, and XPS. The capacity retention of NaNMFM-0.02 (84.05 %) was higher than that of NaNFM (73 %) after 200 cycles of the material at 5C. In addition, NaNMFM-0.02 achieved a first discharge specific capacity of 146.5 mAh/g at high voltage. Based on structural and electrochemical analyses, this improvement is attributed to the fact that magnesium acts as a “pillar” to stabilize the crystal structure of NaNFM, while magnesium doping reduces the Jahn-Teller effect. As a result, the material has better electrochemical properties.</div></div>","PeriodicalId":431,"journal":{"name":"Solid State Ionics","volume":"417 ","pages":"Article 116718"},"PeriodicalIF":3.0000,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of the position of Mg replacing Ni on O3-NaNi1/3Fe1/3Mn1/3O2 on the structural stability of cathode materials\",\"authors\":\"Jingxiu Tian , Li-ang Zhu , Hongshun Miao , Xiangxin Li , Yan Liu\",\"doi\":\"10.1016/j.ssi.2024.116718\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>O3-NaNi<sub>1/3</sub>Fe<sub>1/3</sub>Mn<sub>1/3</sub>O<sub>2</sub> (NaNFM) materials are susceptible to complex phase transitions during electrical cycling leading to poor structural, capacity retention and multiplicity properties. These drawbacks hinder the application of NaNFM in sodium-ion batteries. Here, Mg<sup>2+</sup> with larger ionic radius was used to dope its transition metal layer Ni site. The effects of Mg<sup>2+</sup> doped NaNFM crystal structure and transition metal valence states on its electrochemical properties were investigated by XRD, SEM, and XPS. The capacity retention of NaNMFM-0.02 (84.05 %) was higher than that of NaNFM (73 %) after 200 cycles of the material at 5C. In addition, NaNMFM-0.02 achieved a first discharge specific capacity of 146.5 mAh/g at high voltage. Based on structural and electrochemical analyses, this improvement is attributed to the fact that magnesium acts as a “pillar” to stabilize the crystal structure of NaNFM, while magnesium doping reduces the Jahn-Teller effect. As a result, the material has better electrochemical properties.</div></div>\",\"PeriodicalId\":431,\"journal\":{\"name\":\"Solid State Ionics\",\"volume\":\"417 \",\"pages\":\"Article 116718\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Solid State Ionics\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167273824002662\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solid State Ionics","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167273824002662","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Effect of the position of Mg replacing Ni on O3-NaNi1/3Fe1/3Mn1/3O2 on the structural stability of cathode materials
O3-NaNi1/3Fe1/3Mn1/3O2 (NaNFM) materials are susceptible to complex phase transitions during electrical cycling leading to poor structural, capacity retention and multiplicity properties. These drawbacks hinder the application of NaNFM in sodium-ion batteries. Here, Mg2+ with larger ionic radius was used to dope its transition metal layer Ni site. The effects of Mg2+ doped NaNFM crystal structure and transition metal valence states on its electrochemical properties were investigated by XRD, SEM, and XPS. The capacity retention of NaNMFM-0.02 (84.05 %) was higher than that of NaNFM (73 %) after 200 cycles of the material at 5C. In addition, NaNMFM-0.02 achieved a first discharge specific capacity of 146.5 mAh/g at high voltage. Based on structural and electrochemical analyses, this improvement is attributed to the fact that magnesium acts as a “pillar” to stabilize the crystal structure of NaNFM, while magnesium doping reduces the Jahn-Teller effect. As a result, the material has better electrochemical properties.
期刊介绍:
This interdisciplinary journal is devoted to the physics, chemistry and materials science of diffusion, mass transport, and reactivity of solids. The major part of each issue is devoted to articles on:
(i) physics and chemistry of defects in solids;
(ii) reactions in and on solids, e.g. intercalation, corrosion, oxidation, sintering;
(iii) ion transport measurements, mechanisms and theory;
(iv) solid state electrochemistry;
(v) ionically-electronically mixed conducting solids.
Related technological applications are also included, provided their characteristics are interpreted in terms of the basic solid state properties.
Review papers and relevant symposium proceedings are welcome.