{"title":"赫斯顿随机波动率模型下的定时波动率障碍期权定价","authors":"Mijin Ha , Donghyun Kim , Ji-Hun Yoon","doi":"10.1016/j.cam.2024.116310","DOIUrl":null,"url":null,"abstract":"<div><div>Timer options are financial instruments that enable investors to exercise their rights on a random maturity date the realized variance reaches the level of variance budget. These options provide a stable investment opportunity for investors under the unpredictable and complex financial markets, such as global financial crisis or COVID-19 pandemic, which can induce the drastic changes of the volatility for the underlying asset. Meanwhile, in the financial markets, investors who invest in standard timer options may face the problems caused by the postponement of the exercising time for too low volatility, compared to standard vanilla options. In this regard, to overcome such disadvantages, we propose timer volatility-barrier options, which are activated and expired when the volatility arrives at a relatively low barrier level, with the original properties of the standard timer options. In this paper, by making use of the method of images, we derive an analytical formulas for the timer volatility-barrier options so that the volatility process can be driven by Heston stochastic volatility model, and verify the pricing accuracy of the timer options by comparing our solutions with those obtained from Monte Carlo simulations. Finally, we conduct numerical studies on the timer volatility-barrier options to examine the pricing sensitivities with respect to the various model parameters, and implement the discussion for pricing formula of double volatility barrier type of the timer options.</div></div>","PeriodicalId":50226,"journal":{"name":"Journal of Computational and Applied Mathematics","volume":"457 ","pages":"Article 116310"},"PeriodicalIF":2.1000,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Pricing of timer volatility-barrier options under Heston’s stochastic volatility model\",\"authors\":\"Mijin Ha , Donghyun Kim , Ji-Hun Yoon\",\"doi\":\"10.1016/j.cam.2024.116310\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Timer options are financial instruments that enable investors to exercise their rights on a random maturity date the realized variance reaches the level of variance budget. These options provide a stable investment opportunity for investors under the unpredictable and complex financial markets, such as global financial crisis or COVID-19 pandemic, which can induce the drastic changes of the volatility for the underlying asset. Meanwhile, in the financial markets, investors who invest in standard timer options may face the problems caused by the postponement of the exercising time for too low volatility, compared to standard vanilla options. In this regard, to overcome such disadvantages, we propose timer volatility-barrier options, which are activated and expired when the volatility arrives at a relatively low barrier level, with the original properties of the standard timer options. In this paper, by making use of the method of images, we derive an analytical formulas for the timer volatility-barrier options so that the volatility process can be driven by Heston stochastic volatility model, and verify the pricing accuracy of the timer options by comparing our solutions with those obtained from Monte Carlo simulations. Finally, we conduct numerical studies on the timer volatility-barrier options to examine the pricing sensitivities with respect to the various model parameters, and implement the discussion for pricing formula of double volatility barrier type of the timer options.</div></div>\",\"PeriodicalId\":50226,\"journal\":{\"name\":\"Journal of Computational and Applied Mathematics\",\"volume\":\"457 \",\"pages\":\"Article 116310\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-10-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computational and Applied Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0377042724005582\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational and Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0377042724005582","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Pricing of timer volatility-barrier options under Heston’s stochastic volatility model
Timer options are financial instruments that enable investors to exercise their rights on a random maturity date the realized variance reaches the level of variance budget. These options provide a stable investment opportunity for investors under the unpredictable and complex financial markets, such as global financial crisis or COVID-19 pandemic, which can induce the drastic changes of the volatility for the underlying asset. Meanwhile, in the financial markets, investors who invest in standard timer options may face the problems caused by the postponement of the exercising time for too low volatility, compared to standard vanilla options. In this regard, to overcome such disadvantages, we propose timer volatility-barrier options, which are activated and expired when the volatility arrives at a relatively low barrier level, with the original properties of the standard timer options. In this paper, by making use of the method of images, we derive an analytical formulas for the timer volatility-barrier options so that the volatility process can be driven by Heston stochastic volatility model, and verify the pricing accuracy of the timer options by comparing our solutions with those obtained from Monte Carlo simulations. Finally, we conduct numerical studies on the timer volatility-barrier options to examine the pricing sensitivities with respect to the various model parameters, and implement the discussion for pricing formula of double volatility barrier type of the timer options.
期刊介绍:
The Journal of Computational and Applied Mathematics publishes original papers of high scientific value in all areas of computational and applied mathematics. The main interest of the Journal is in papers that describe and analyze new computational techniques for solving scientific or engineering problems. Also the improved analysis, including the effectiveness and applicability, of existing methods and algorithms is of importance. The computational efficiency (e.g. the convergence, stability, accuracy, ...) should be proved and illustrated by nontrivial numerical examples. Papers describing only variants of existing methods, without adding significant new computational properties are not of interest.
The audience consists of: applied mathematicians, numerical analysts, computational scientists and engineers.