有理 C1 立方 Powell-Sabin B 样条曲线在规则曲面表示中的应用

IF 2.1 2区 数学 Q1 MATHEMATICS, APPLIED
Jan Grošelj, Ada Šadl Praprotnik
{"title":"有理 C1 立方 Powell-Sabin B 样条曲线在规则曲面表示中的应用","authors":"Jan Grošelj,&nbsp;Ada Šadl Praprotnik","doi":"10.1016/j.cam.2024.116292","DOIUrl":null,"url":null,"abstract":"<div><div>This paper defines rational <span><math><msup><mrow><mi>C</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span> cubic Powell–Sabin splines and analyses their basic properties. A rational B-spline basis is established and an algorithm for determining the corresponding control points and weights by using the blossoming operator is presented. The capability of the introduced splines to represent rational cubic triangular Bézier patches and quadratic NURPS is discussed and explicit conversion formulas are provided. Moreover, the application of the rational <span><math><msup><mrow><mi>C</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span> cubic Powell–Sabin splines to representation of ruled surfaces is studied, showing that the cubic splines can give smoother parametrizations than the NURPS.</div></div>","PeriodicalId":50226,"journal":{"name":"Journal of Computational and Applied Mathematics","volume":"457 ","pages":"Article 116292"},"PeriodicalIF":2.1000,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rational C1 cubic Powell–Sabin B-splines with application to representation of ruled surfaces\",\"authors\":\"Jan Grošelj,&nbsp;Ada Šadl Praprotnik\",\"doi\":\"10.1016/j.cam.2024.116292\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper defines rational <span><math><msup><mrow><mi>C</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span> cubic Powell–Sabin splines and analyses their basic properties. A rational B-spline basis is established and an algorithm for determining the corresponding control points and weights by using the blossoming operator is presented. The capability of the introduced splines to represent rational cubic triangular Bézier patches and quadratic NURPS is discussed and explicit conversion formulas are provided. Moreover, the application of the rational <span><math><msup><mrow><mi>C</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span> cubic Powell–Sabin splines to representation of ruled surfaces is studied, showing that the cubic splines can give smoother parametrizations than the NURPS.</div></div>\",\"PeriodicalId\":50226,\"journal\":{\"name\":\"Journal of Computational and Applied Mathematics\",\"volume\":\"457 \",\"pages\":\"Article 116292\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computational and Applied Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0377042724005405\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational and Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0377042724005405","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本文定义了有理 C1 立方 Powell-Sabin 样条曲线并分析了其基本特性。本文建立了有理 B 样条曲线的基础,并提出了一种利用绽放算子确定相应控制点和权重的算法。讨论了引入的样条曲线表示有理立方三角贝塞尔斑块和二次 NURPS 的能力,并提供了明确的转换公式。此外,还研究了有理 C1 立方 Powell-Sabin 样条曲线在规则曲面表示中的应用,结果表明立方样条曲线能给出比 NURPS 更平滑的参数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Rational C1 cubic Powell–Sabin B-splines with application to representation of ruled surfaces
This paper defines rational C1 cubic Powell–Sabin splines and analyses their basic properties. A rational B-spline basis is established and an algorithm for determining the corresponding control points and weights by using the blossoming operator is presented. The capability of the introduced splines to represent rational cubic triangular Bézier patches and quadratic NURPS is discussed and explicit conversion formulas are provided. Moreover, the application of the rational C1 cubic Powell–Sabin splines to representation of ruled surfaces is studied, showing that the cubic splines can give smoother parametrizations than the NURPS.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.40
自引率
4.20%
发文量
437
审稿时长
3.0 months
期刊介绍: The Journal of Computational and Applied Mathematics publishes original papers of high scientific value in all areas of computational and applied mathematics. The main interest of the Journal is in papers that describe and analyze new computational techniques for solving scientific or engineering problems. Also the improved analysis, including the effectiveness and applicability, of existing methods and algorithms is of importance. The computational efficiency (e.g. the convergence, stability, accuracy, ...) should be proved and illustrated by nontrivial numerical examples. Papers describing only variants of existing methods, without adding significant new computational properties are not of interest. The audience consists of: applied mathematicians, numerical analysts, computational scientists and engineers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信