{"title":"具有基底岩浆海洋的类地行星的热演化和磁演化","authors":"Victor Lherm , Miki Nakajima , Eric G. Blackman","doi":"10.1016/j.pepi.2024.107267","DOIUrl":null,"url":null,"abstract":"<div><div>Earth's geodynamo has operated for over 3.5 billion years. The magnetic field is currently powered by thermocompositional convection in the outer core, which involves the release of light elements and latent heat as the inner core solidifies. However, since the inner core nucleated no more than 1.5 billion years ago, the early dynamo could not rely on these buoyancy sources. Given recent estimates of the thermal conductivity of the outer core, an alternative mechanism may be required to sustain the geodynamo prior to nucleation of the inner core. One possibility is a silicate dynamo operating in a long-lived basal magma ocean. Here, we investigate the structural, thermal, buoyancy, and magnetic evolution of an Earth-like terrestrial planet. Using modern equations of state and melting curves, we include a time-dependent parameterization of the compositional evolution of an iron-rich basal magma ocean. We combine an internal structure integration of the planet with energy budgets in a coupled core, basal magma ocean, and mantle system. We determine the thermocompositional convective stability of the core and the basal magma ocean, and assess their respective dynamo activity using entropy budgets and magnetic Reynolds numbers. Our conservative nominal model predicts a transient basal magma ocean dynamo followed by a core dynamo after 1 billion years. The model is sensitive to several parameters, including the initial temperature of the core-mantle boundary, the parameterization of mantle convection, the composition of the basal magma ocean, the radiogenic content of the planet, as well as convective velocity and magnetic scaling laws. We use the nominal model to constrain the range of basal magma ocean electrical conductivity and core thermal conductivity that sustain a dynamo. This highlights the importance of constraining the parameters and transport properties that influence planetary evolution using experiments and simulations conducted at pressure, temperature, and composition conditions found in planetary interior, in order to reduce model degeneracies.</div></div>","PeriodicalId":54614,"journal":{"name":"Physics of the Earth and Planetary Interiors","volume":"356 ","pages":"Article 107267"},"PeriodicalIF":2.4000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Thermal and magnetic evolution of an Earth-like planet with a basal magma ocean\",\"authors\":\"Victor Lherm , Miki Nakajima , Eric G. Blackman\",\"doi\":\"10.1016/j.pepi.2024.107267\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Earth's geodynamo has operated for over 3.5 billion years. The magnetic field is currently powered by thermocompositional convection in the outer core, which involves the release of light elements and latent heat as the inner core solidifies. However, since the inner core nucleated no more than 1.5 billion years ago, the early dynamo could not rely on these buoyancy sources. Given recent estimates of the thermal conductivity of the outer core, an alternative mechanism may be required to sustain the geodynamo prior to nucleation of the inner core. One possibility is a silicate dynamo operating in a long-lived basal magma ocean. Here, we investigate the structural, thermal, buoyancy, and magnetic evolution of an Earth-like terrestrial planet. Using modern equations of state and melting curves, we include a time-dependent parameterization of the compositional evolution of an iron-rich basal magma ocean. We combine an internal structure integration of the planet with energy budgets in a coupled core, basal magma ocean, and mantle system. We determine the thermocompositional convective stability of the core and the basal magma ocean, and assess their respective dynamo activity using entropy budgets and magnetic Reynolds numbers. Our conservative nominal model predicts a transient basal magma ocean dynamo followed by a core dynamo after 1 billion years. The model is sensitive to several parameters, including the initial temperature of the core-mantle boundary, the parameterization of mantle convection, the composition of the basal magma ocean, the radiogenic content of the planet, as well as convective velocity and magnetic scaling laws. We use the nominal model to constrain the range of basal magma ocean electrical conductivity and core thermal conductivity that sustain a dynamo. This highlights the importance of constraining the parameters and transport properties that influence planetary evolution using experiments and simulations conducted at pressure, temperature, and composition conditions found in planetary interior, in order to reduce model degeneracies.</div></div>\",\"PeriodicalId\":54614,\"journal\":{\"name\":\"Physics of the Earth and Planetary Interiors\",\"volume\":\"356 \",\"pages\":\"Article 107267\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physics of the Earth and Planetary Interiors\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0031920124001250\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics of the Earth and Planetary Interiors","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0031920124001250","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
Thermal and magnetic evolution of an Earth-like planet with a basal magma ocean
Earth's geodynamo has operated for over 3.5 billion years. The magnetic field is currently powered by thermocompositional convection in the outer core, which involves the release of light elements and latent heat as the inner core solidifies. However, since the inner core nucleated no more than 1.5 billion years ago, the early dynamo could not rely on these buoyancy sources. Given recent estimates of the thermal conductivity of the outer core, an alternative mechanism may be required to sustain the geodynamo prior to nucleation of the inner core. One possibility is a silicate dynamo operating in a long-lived basal magma ocean. Here, we investigate the structural, thermal, buoyancy, and magnetic evolution of an Earth-like terrestrial planet. Using modern equations of state and melting curves, we include a time-dependent parameterization of the compositional evolution of an iron-rich basal magma ocean. We combine an internal structure integration of the planet with energy budgets in a coupled core, basal magma ocean, and mantle system. We determine the thermocompositional convective stability of the core and the basal magma ocean, and assess their respective dynamo activity using entropy budgets and magnetic Reynolds numbers. Our conservative nominal model predicts a transient basal magma ocean dynamo followed by a core dynamo after 1 billion years. The model is sensitive to several parameters, including the initial temperature of the core-mantle boundary, the parameterization of mantle convection, the composition of the basal magma ocean, the radiogenic content of the planet, as well as convective velocity and magnetic scaling laws. We use the nominal model to constrain the range of basal magma ocean electrical conductivity and core thermal conductivity that sustain a dynamo. This highlights the importance of constraining the parameters and transport properties that influence planetary evolution using experiments and simulations conducted at pressure, temperature, and composition conditions found in planetary interior, in order to reduce model degeneracies.
期刊介绍:
Launched in 1968 to fill the need for an international journal in the field of planetary physics, geodesy and geophysics, Physics of the Earth and Planetary Interiors has now grown to become important reading matter for all geophysicists. It is the only journal to be entirely devoted to the physical and chemical processes of planetary interiors.
Original research papers, review articles, short communications and book reviews are all published on a regular basis; and from time to time special issues of the journal are devoted to the publication of the proceedings of symposia and congresses which the editors feel will be of particular interest to the reader.