Xu Zhang , Gao Duan , Yan Fang , Xuechuan Yin , Wei Li
{"title":"基于改进的高阶 RAMP 插值模型的拓扑优化和曲面方形蜂窝夹层结构的弯曲特性研究","authors":"Xu Zhang , Gao Duan , Yan Fang , Xuechuan Yin , Wei Li","doi":"10.1016/j.compstruct.2024.118643","DOIUrl":null,"url":null,"abstract":"<div><div>Curved honeycomb sandwich structures with larger surface areas effectively reduce the number of fasteners and connectors, resulting in weight reduction, cost savings, and reliability improvement. Square honeycombs exhibit higher in-plane tensile strength, and are more compatible with mechanical components. Topology optimization can realize the variable-density design of square honeycombs, enhancing the strength and stiffness of curved sandwich structures, but the high-order Rational Approximation of Material Properties (RAMP) interpolation model with a fast convergence rate has the relatively poor clarity and stability in topology boundaries. Hence, a variable-density topology optimization method based on the improved high-order RAMP model is developed for curved square honeycomb sandwich structures. The high-order RAMP interpolation model is improved by incorporating a minimum modulus term into the material interpolation function and employing the Bi-directional Evolutionary Structural Optimization (BESO) to refine the Optimality Criteria (OC) method. A functional relationship between the wall thickness of cross-shaped cells (i.e., simplified models of four adjacent square cells arranged in a cross) and the relative density of topology units is constructed using a density mapping method, and the topology optimization with the relative density of cross-shaped cells as the design variable is performed to minimize the compliance of the core. Three-point bending tests are conducted on 3D printed non-optimized and optimized curved honeycomb sandwich structures with different core material retention rates and panel thicknesses, and the experimental results are compared with those of simulations to explore the bending properties and failure behaviors. The results indicate that the modified high-order RAMP interpolation model enhances the clarity and stability of topology structures, the variable-density topology optimization significantly improves the bending properties of curved square honeycomb sandwich structures, and the experimental and numerical results are largely consistent.</div></div>","PeriodicalId":281,"journal":{"name":"Composite Structures","volume":"351 ","pages":"Article 118643"},"PeriodicalIF":6.3000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Topology optimization based on the improved high-order RAMP interpolation model and bending properties research for curved square honeycomb sandwich structures\",\"authors\":\"Xu Zhang , Gao Duan , Yan Fang , Xuechuan Yin , Wei Li\",\"doi\":\"10.1016/j.compstruct.2024.118643\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Curved honeycomb sandwich structures with larger surface areas effectively reduce the number of fasteners and connectors, resulting in weight reduction, cost savings, and reliability improvement. Square honeycombs exhibit higher in-plane tensile strength, and are more compatible with mechanical components. Topology optimization can realize the variable-density design of square honeycombs, enhancing the strength and stiffness of curved sandwich structures, but the high-order Rational Approximation of Material Properties (RAMP) interpolation model with a fast convergence rate has the relatively poor clarity and stability in topology boundaries. Hence, a variable-density topology optimization method based on the improved high-order RAMP model is developed for curved square honeycomb sandwich structures. The high-order RAMP interpolation model is improved by incorporating a minimum modulus term into the material interpolation function and employing the Bi-directional Evolutionary Structural Optimization (BESO) to refine the Optimality Criteria (OC) method. A functional relationship between the wall thickness of cross-shaped cells (i.e., simplified models of four adjacent square cells arranged in a cross) and the relative density of topology units is constructed using a density mapping method, and the topology optimization with the relative density of cross-shaped cells as the design variable is performed to minimize the compliance of the core. Three-point bending tests are conducted on 3D printed non-optimized and optimized curved honeycomb sandwich structures with different core material retention rates and panel thicknesses, and the experimental results are compared with those of simulations to explore the bending properties and failure behaviors. The results indicate that the modified high-order RAMP interpolation model enhances the clarity and stability of topology structures, the variable-density topology optimization significantly improves the bending properties of curved square honeycomb sandwich structures, and the experimental and numerical results are largely consistent.</div></div>\",\"PeriodicalId\":281,\"journal\":{\"name\":\"Composite Structures\",\"volume\":\"351 \",\"pages\":\"Article 118643\"},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2024-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Composite Structures\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0263822324007712\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, COMPOSITES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composite Structures","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0263822324007712","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
Topology optimization based on the improved high-order RAMP interpolation model and bending properties research for curved square honeycomb sandwich structures
Curved honeycomb sandwich structures with larger surface areas effectively reduce the number of fasteners and connectors, resulting in weight reduction, cost savings, and reliability improvement. Square honeycombs exhibit higher in-plane tensile strength, and are more compatible with mechanical components. Topology optimization can realize the variable-density design of square honeycombs, enhancing the strength and stiffness of curved sandwich structures, but the high-order Rational Approximation of Material Properties (RAMP) interpolation model with a fast convergence rate has the relatively poor clarity and stability in topology boundaries. Hence, a variable-density topology optimization method based on the improved high-order RAMP model is developed for curved square honeycomb sandwich structures. The high-order RAMP interpolation model is improved by incorporating a minimum modulus term into the material interpolation function and employing the Bi-directional Evolutionary Structural Optimization (BESO) to refine the Optimality Criteria (OC) method. A functional relationship between the wall thickness of cross-shaped cells (i.e., simplified models of four adjacent square cells arranged in a cross) and the relative density of topology units is constructed using a density mapping method, and the topology optimization with the relative density of cross-shaped cells as the design variable is performed to minimize the compliance of the core. Three-point bending tests are conducted on 3D printed non-optimized and optimized curved honeycomb sandwich structures with different core material retention rates and panel thicknesses, and the experimental results are compared with those of simulations to explore the bending properties and failure behaviors. The results indicate that the modified high-order RAMP interpolation model enhances the clarity and stability of topology structures, the variable-density topology optimization significantly improves the bending properties of curved square honeycomb sandwich structures, and the experimental and numerical results are largely consistent.
期刊介绍:
The past few decades have seen outstanding advances in the use of composite materials in structural applications. There can be little doubt that, within engineering circles, composites have revolutionised traditional design concepts and made possible an unparalleled range of new and exciting possibilities as viable materials for construction. Composite Structures, an International Journal, disseminates knowledge between users, manufacturers, designers and researchers involved in structures or structural components manufactured using composite materials.
The journal publishes papers which contribute to knowledge in the use of composite materials in engineering structures. Papers deal with design, research and development studies, experimental investigations, theoretical analysis and fabrication techniques relevant to the application of composites in load-bearing components for assemblies, ranging from individual components such as plates and shells to complete composite structures.