关于与分区曲柄相关的 1 的总数 modulo 11

IF 1.2 3区 数学 Q1 MATHEMATICS
Dandan Chen , Rong Chen , Siyu Yin
{"title":"关于与分区曲柄相关的 1 的总数 modulo 11","authors":"Dandan Chen ,&nbsp;Rong Chen ,&nbsp;Siyu Yin","doi":"10.1016/j.jmaa.2024.128954","DOIUrl":null,"url":null,"abstract":"<div><div>In 2021, Andrews mentioned that George Beck introduced partition statistics <span><math><msub><mrow><mi>M</mi></mrow><mrow><mi>w</mi></mrow></msub><mo>(</mo><mi>r</mi><mo>,</mo><mi>m</mi><mo>,</mo><mi>n</mi><mo>)</mo></math></span>, which denote the total number of ones in the partition of <em>n</em> with crank congruent to <em>r</em> modulo <em>m</em>. Recently, a number of congruences and identities involving <span><math><msub><mrow><mi>M</mi></mrow><mrow><mi>w</mi></mrow></msub><mo>(</mo><mi>r</mi><mo>,</mo><mi>m</mi><mo>,</mo><mi>n</mi><mo>)</mo></math></span> for some small <em>m</em> have been developed. We establish the 11-dissection of the generating functions for <span><math><msub><mrow><mi>M</mi></mrow><mrow><mi>ω</mi></mrow></msub><mo>(</mo><mi>r</mi><mo>,</mo><mn>11</mn><mo>,</mo><mi>n</mi><mo>)</mo><mo>−</mo><msub><mrow><mi>M</mi></mrow><mrow><mi>ω</mi></mrow></msub><mo>(</mo><mn>11</mn><mo>−</mo><mi>r</mi><mo>,</mo><mn>11</mn><mo>,</mo><mi>n</mi><mo>)</mo></math></span>, where <span><math><mi>r</mi><mo>=</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>,</mo><mn>3</mn><mo>,</mo><mn>4</mn><mo>,</mo><mn>5</mn></math></span>. In particular, we discover a beautiful identity involving <span><math><msub><mrow><mi>M</mi></mrow><mrow><mi>ω</mi></mrow></msub><mo>(</mo><mi>r</mi><mo>,</mo><mn>11</mn><mo>,</mo><mn>11</mn><mi>n</mi><mo>+</mo><mn>6</mn><mo>)</mo></math></span>.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"543 1","pages":"Article 128954"},"PeriodicalIF":1.2000,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the total number of ones associated with cranks of partitions modulo 11\",\"authors\":\"Dandan Chen ,&nbsp;Rong Chen ,&nbsp;Siyu Yin\",\"doi\":\"10.1016/j.jmaa.2024.128954\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In 2021, Andrews mentioned that George Beck introduced partition statistics <span><math><msub><mrow><mi>M</mi></mrow><mrow><mi>w</mi></mrow></msub><mo>(</mo><mi>r</mi><mo>,</mo><mi>m</mi><mo>,</mo><mi>n</mi><mo>)</mo></math></span>, which denote the total number of ones in the partition of <em>n</em> with crank congruent to <em>r</em> modulo <em>m</em>. Recently, a number of congruences and identities involving <span><math><msub><mrow><mi>M</mi></mrow><mrow><mi>w</mi></mrow></msub><mo>(</mo><mi>r</mi><mo>,</mo><mi>m</mi><mo>,</mo><mi>n</mi><mo>)</mo></math></span> for some small <em>m</em> have been developed. We establish the 11-dissection of the generating functions for <span><math><msub><mrow><mi>M</mi></mrow><mrow><mi>ω</mi></mrow></msub><mo>(</mo><mi>r</mi><mo>,</mo><mn>11</mn><mo>,</mo><mi>n</mi><mo>)</mo><mo>−</mo><msub><mrow><mi>M</mi></mrow><mrow><mi>ω</mi></mrow></msub><mo>(</mo><mn>11</mn><mo>−</mo><mi>r</mi><mo>,</mo><mn>11</mn><mo>,</mo><mi>n</mi><mo>)</mo></math></span>, where <span><math><mi>r</mi><mo>=</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>,</mo><mn>3</mn><mo>,</mo><mn>4</mn><mo>,</mo><mn>5</mn></math></span>. In particular, we discover a beautiful identity involving <span><math><msub><mrow><mi>M</mi></mrow><mrow><mi>ω</mi></mrow></msub><mo>(</mo><mi>r</mi><mo>,</mo><mn>11</mn><mo>,</mo><mn>11</mn><mi>n</mi><mo>+</mo><mn>6</mn><mo>)</mo></math></span>.</div></div>\",\"PeriodicalId\":50147,\"journal\":{\"name\":\"Journal of Mathematical Analysis and Applications\",\"volume\":\"543 1\",\"pages\":\"Article 128954\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-10-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematical Analysis and Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022247X2400876X\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Analysis and Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022247X2400876X","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

2021 年,安德鲁斯提到乔治-贝克引入了分部统计量 Mw(r,m,n),表示 n 的分部中曲柄与 r 同调的 m 的总数。我们建立了 Mω(r,11,n)-Mω(11-r,11,n)(其中 r=1,2,3,4,5)生成函数的 11 分段。我们特别发现了一个涉及 Mω(r,11,11n+6)的美丽特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the total number of ones associated with cranks of partitions modulo 11
In 2021, Andrews mentioned that George Beck introduced partition statistics Mw(r,m,n), which denote the total number of ones in the partition of n with crank congruent to r modulo m. Recently, a number of congruences and identities involving Mw(r,m,n) for some small m have been developed. We establish the 11-dissection of the generating functions for Mω(r,11,n)Mω(11r,11,n), where r=1,2,3,4,5. In particular, we discover a beautiful identity involving Mω(r,11,11n+6).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.50
自引率
7.70%
发文量
790
审稿时长
6 months
期刊介绍: The Journal of Mathematical Analysis and Applications presents papers that treat mathematical analysis and its numerous applications. The journal emphasizes articles devoted to the mathematical treatment of questions arising in physics, chemistry, biology, and engineering, particularly those that stress analytical aspects and novel problems and their solutions. Papers are sought which employ one or more of the following areas of classical analysis: • Analytic number theory • Functional analysis and operator theory • Real and harmonic analysis • Complex analysis • Numerical analysis • Applied mathematics • Partial differential equations • Dynamical systems • Control and Optimization • Probability • Mathematical biology • Combinatorics • Mathematical physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信