用于柔性和可拉伸超级电容器的梯度层状 MXene/中空木质素纳米球结构设计

IF 26.6 1区 材料科学 Q1 Engineering
Haonan Zhang, Cheng Hao, Tongtong Fu, Dian Yu, Jane Howe, Kaiwen Chen, Ning Yan, Hao Ren, Huamin Zhai
{"title":"用于柔性和可拉伸超级电容器的梯度层状 MXene/中空木质素纳米球结构设计","authors":"Haonan Zhang,&nbsp;Cheng Hao,&nbsp;Tongtong Fu,&nbsp;Dian Yu,&nbsp;Jane Howe,&nbsp;Kaiwen Chen,&nbsp;Ning Yan,&nbsp;Hao Ren,&nbsp;Huamin Zhai","doi":"10.1007/s40820-024-01512-3","DOIUrl":null,"url":null,"abstract":"<div><h2>Highlights</h2><div>\n \n <ul>\n <li>\n <p>A novel gradient-layered architecture based on single-pore hollow lignin nanospheres (HLNPs)-intercalated MXene layers was created to fabricate highly stretchable (600%) and durable (1000 cycling) supercapacitor electrodes.</p>\n </li>\n <li>\n <p>The architecture reduced the overstacking of MXene, and the micro-chamber structure of HLNPs better utilized lignin’s pseudocapacitive property to improve ion and electron accessibility (specific capacitance reached 1273 mF cm<sup>−2</sup>).</p>\n </li>\n <li>\n <p>HLNPs enhanced mechanical durability and capacitive stability of the integrated wrinkled electrodes during the stretch-release cycling.</p>\n </li>\n </ul>\n </div></div>","PeriodicalId":714,"journal":{"name":"Nano-Micro Letters","volume":"17 1","pages":""},"PeriodicalIF":26.6000,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40820-024-01512-3.pdf","citationCount":"0","resultStr":"{\"title\":\"Gradient-Layered MXene/Hollow Lignin Nanospheres Architecture Design for Flexible and Stretchable Supercapacitors\",\"authors\":\"Haonan Zhang,&nbsp;Cheng Hao,&nbsp;Tongtong Fu,&nbsp;Dian Yu,&nbsp;Jane Howe,&nbsp;Kaiwen Chen,&nbsp;Ning Yan,&nbsp;Hao Ren,&nbsp;Huamin Zhai\",\"doi\":\"10.1007/s40820-024-01512-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h2>Highlights</h2><div>\\n \\n <ul>\\n <li>\\n <p>A novel gradient-layered architecture based on single-pore hollow lignin nanospheres (HLNPs)-intercalated MXene layers was created to fabricate highly stretchable (600%) and durable (1000 cycling) supercapacitor electrodes.</p>\\n </li>\\n <li>\\n <p>The architecture reduced the overstacking of MXene, and the micro-chamber structure of HLNPs better utilized lignin’s pseudocapacitive property to improve ion and electron accessibility (specific capacitance reached 1273 mF cm<sup>−2</sup>).</p>\\n </li>\\n <li>\\n <p>HLNPs enhanced mechanical durability and capacitive stability of the integrated wrinkled electrodes during the stretch-release cycling.</p>\\n </li>\\n </ul>\\n </div></div>\",\"PeriodicalId\":714,\"journal\":{\"name\":\"Nano-Micro Letters\",\"volume\":\"17 1\",\"pages\":\"\"},\"PeriodicalIF\":26.6000,\"publicationDate\":\"2024-10-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s40820-024-01512-3.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano-Micro Letters\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40820-024-01512-3\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano-Micro Letters","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s40820-024-01512-3","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

基于单孔中空木质素纳米球(HLNPs)-MXene 层的新型梯度层结构被用于制造高度可拉伸(600%)和耐用(1000 次循环)的超级电容器电极。这种结构减少了 MXene 的过度堆叠,HLNPs 的微腔结构更好地利用了木质素的伪电容特性,提高了离子和电子的可及性(比电容达到 1273 mF cm-2)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Gradient-Layered MXene/Hollow Lignin Nanospheres Architecture Design for Flexible and Stretchable Supercapacitors

Gradient-Layered MXene/Hollow Lignin Nanospheres Architecture Design for Flexible and Stretchable Supercapacitors

Highlights

  • A novel gradient-layered architecture based on single-pore hollow lignin nanospheres (HLNPs)-intercalated MXene layers was created to fabricate highly stretchable (600%) and durable (1000 cycling) supercapacitor electrodes.

  • The architecture reduced the overstacking of MXene, and the micro-chamber structure of HLNPs better utilized lignin’s pseudocapacitive property to improve ion and electron accessibility (specific capacitance reached 1273 mF cm−2).

  • HLNPs enhanced mechanical durability and capacitive stability of the integrated wrinkled electrodes during the stretch-release cycling.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nano-Micro Letters
Nano-Micro Letters NANOSCIENCE & NANOTECHNOLOGY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
32.60
自引率
4.90%
发文量
981
审稿时长
1.1 months
期刊介绍: Nano-Micro Letters is a peer-reviewed, international, interdisciplinary, and open-access journal published under the SpringerOpen brand. Nano-Micro Letters focuses on the science, experiments, engineering, technologies, and applications of nano- or microscale structures and systems in various fields such as physics, chemistry, biology, material science, and pharmacy.It also explores the expanding interfaces between these fields. Nano-Micro Letters particularly emphasizes the bottom-up approach in the length scale from nano to micro. This approach is crucial for achieving industrial applications in nanotechnology, as it involves the assembly, modification, and control of nanostructures on a microscale.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信