Elsa Abs, David Coulette, Philippe Ciais, Steven D. Allison
{"title":"在与全球变化相关的十年至百年时间尺度上,微生物进化推动底物降解的适应性变化","authors":"Elsa Abs, David Coulette, Philippe Ciais, Steven D. Allison","doi":"10.1111/ele.14530","DOIUrl":null,"url":null,"abstract":"<p>Understanding microbial adaptation is crucial for predicting how soil carbon dynamics and global biogeochemical cycles will respond to climate change. This study employs the DEMENT model of microbial decomposition, along with empirical mutation and dispersal rates, to explore the roles of mutation and dispersal in the adaptation of soil microbial populations to shifts in litter chemistry, changes that are anticipated with climate-driven vegetation dynamics. Following a change in litter chemistry, mutation generally allows for a higher rate of litter decomposition than dispersal, especially when dispersal predominantly introduces genotypes already present in the population. These findings challenge the common idea that mutation rates are too low to affect ecosystem processes on ecological timescales. These results demonstrate that evolutionary processes, such as mutation, can help maintain ecosystem functioning as the climate changes.</p>","PeriodicalId":161,"journal":{"name":"Ecology Letters","volume":"27 10","pages":""},"PeriodicalIF":7.6000,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/ele.14530","citationCount":"0","resultStr":"{\"title\":\"Microbial Evolution Drives Adaptation of Substrate Degradation on Decadal to Centennial Time Scales Relevant to Global Change\",\"authors\":\"Elsa Abs, David Coulette, Philippe Ciais, Steven D. Allison\",\"doi\":\"10.1111/ele.14530\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Understanding microbial adaptation is crucial for predicting how soil carbon dynamics and global biogeochemical cycles will respond to climate change. This study employs the DEMENT model of microbial decomposition, along with empirical mutation and dispersal rates, to explore the roles of mutation and dispersal in the adaptation of soil microbial populations to shifts in litter chemistry, changes that are anticipated with climate-driven vegetation dynamics. Following a change in litter chemistry, mutation generally allows for a higher rate of litter decomposition than dispersal, especially when dispersal predominantly introduces genotypes already present in the population. These findings challenge the common idea that mutation rates are too low to affect ecosystem processes on ecological timescales. These results demonstrate that evolutionary processes, such as mutation, can help maintain ecosystem functioning as the climate changes.</p>\",\"PeriodicalId\":161,\"journal\":{\"name\":\"Ecology Letters\",\"volume\":\"27 10\",\"pages\":\"\"},\"PeriodicalIF\":7.6000,\"publicationDate\":\"2024-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/ele.14530\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ecology Letters\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/ele.14530\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecology Letters","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/ele.14530","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
Microbial Evolution Drives Adaptation of Substrate Degradation on Decadal to Centennial Time Scales Relevant to Global Change
Understanding microbial adaptation is crucial for predicting how soil carbon dynamics and global biogeochemical cycles will respond to climate change. This study employs the DEMENT model of microbial decomposition, along with empirical mutation and dispersal rates, to explore the roles of mutation and dispersal in the adaptation of soil microbial populations to shifts in litter chemistry, changes that are anticipated with climate-driven vegetation dynamics. Following a change in litter chemistry, mutation generally allows for a higher rate of litter decomposition than dispersal, especially when dispersal predominantly introduces genotypes already present in the population. These findings challenge the common idea that mutation rates are too low to affect ecosystem processes on ecological timescales. These results demonstrate that evolutionary processes, such as mutation, can help maintain ecosystem functioning as the climate changes.
期刊介绍:
Ecology Letters serves as a platform for the rapid publication of innovative research in ecology. It considers manuscripts across all taxa, biomes, and geographic regions, prioritizing papers that investigate clearly stated hypotheses. The journal publishes concise papers of high originality and general interest, contributing to new developments in ecology. Purely descriptive papers and those that only confirm or extend previous results are discouraged.