M. Bertola, A. Castellarin, A. Viglione, E. Valtancoli, G. Blöschl
{"title":"欧洲创纪录洪水的频率和空间变异性","authors":"M. Bertola, A. Castellarin, A. Viglione, E. Valtancoli, G. Blöschl","doi":"10.1029/2023wr036767","DOIUrl":null,"url":null,"abstract":"Regional envelope curves (RECs) have been used to characterize the flooding potential of regions worldwide. However, a comprehensive assessment for Europe is still missing. In this study we use the largest European flood database to quantify the magnitude of record floods, their dependence on catchment size, and the amount of available independent information, which is needed for estimatinig the REC's exceedance probability. We propose a framework for estimating REC parameters across large areas, consisting in partitioning the domain according to the observation density and estimating the REC slope through quantile regression. The results show that the REC parameters vary substantially across Europe. The envelope unit flood associated with a catchment area of 1,000 km<sup>2</sup> varies between 0.1 and 6 m<sup>3</sup>s<sup>−1 </sup>km<sup>−2</sup> and is highest in Mediterranean and Alpine areas and lowest in central-eastern Europe. The slope of the envelope varies between 0 and −1 and is larger in Southern Europe than in Northern Europe. These differences are explained by steeper landscape in mountaineous regions and localized short duration storms producing large floods in small catchments in the Mediterranean, whose intensities are larger than in other parts of Europe. Based on the framework of probabilistic envelope curves we show that, despite the uneven observation density, the obtained RECs are associated with comparable exceedance probabilities.","PeriodicalId":23799,"journal":{"name":"Water Resources Research","volume":"31 3 1","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Frequency and Spatial Variability of European Record Floods\",\"authors\":\"M. Bertola, A. Castellarin, A. Viglione, E. Valtancoli, G. Blöschl\",\"doi\":\"10.1029/2023wr036767\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Regional envelope curves (RECs) have been used to characterize the flooding potential of regions worldwide. However, a comprehensive assessment for Europe is still missing. In this study we use the largest European flood database to quantify the magnitude of record floods, their dependence on catchment size, and the amount of available independent information, which is needed for estimatinig the REC's exceedance probability. We propose a framework for estimating REC parameters across large areas, consisting in partitioning the domain according to the observation density and estimating the REC slope through quantile regression. The results show that the REC parameters vary substantially across Europe. The envelope unit flood associated with a catchment area of 1,000 km<sup>2</sup> varies between 0.1 and 6 m<sup>3</sup>s<sup>−1 </sup>km<sup>−2</sup> and is highest in Mediterranean and Alpine areas and lowest in central-eastern Europe. The slope of the envelope varies between 0 and −1 and is larger in Southern Europe than in Northern Europe. These differences are explained by steeper landscape in mountaineous regions and localized short duration storms producing large floods in small catchments in the Mediterranean, whose intensities are larger than in other parts of Europe. Based on the framework of probabilistic envelope curves we show that, despite the uneven observation density, the obtained RECs are associated with comparable exceedance probabilities.\",\"PeriodicalId\":23799,\"journal\":{\"name\":\"Water Resources Research\",\"volume\":\"31 3 1\",\"pages\":\"\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-10-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Water Resources Research\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1029/2023wr036767\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Resources Research","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1029/2023wr036767","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Frequency and Spatial Variability of European Record Floods
Regional envelope curves (RECs) have been used to characterize the flooding potential of regions worldwide. However, a comprehensive assessment for Europe is still missing. In this study we use the largest European flood database to quantify the magnitude of record floods, their dependence on catchment size, and the amount of available independent information, which is needed for estimatinig the REC's exceedance probability. We propose a framework for estimating REC parameters across large areas, consisting in partitioning the domain according to the observation density and estimating the REC slope through quantile regression. The results show that the REC parameters vary substantially across Europe. The envelope unit flood associated with a catchment area of 1,000 km2 varies between 0.1 and 6 m3s−1 km−2 and is highest in Mediterranean and Alpine areas and lowest in central-eastern Europe. The slope of the envelope varies between 0 and −1 and is larger in Southern Europe than in Northern Europe. These differences are explained by steeper landscape in mountaineous regions and localized short duration storms producing large floods in small catchments in the Mediterranean, whose intensities are larger than in other parts of Europe. Based on the framework of probabilistic envelope curves we show that, despite the uneven observation density, the obtained RECs are associated with comparable exceedance probabilities.
期刊介绍:
Water Resources Research (WRR) is an interdisciplinary journal that focuses on hydrology and water resources. It publishes original research in the natural and social sciences of water. It emphasizes the role of water in the Earth system, including physical, chemical, biological, and ecological processes in water resources research and management, including social, policy, and public health implications. It encompasses observational, experimental, theoretical, analytical, numerical, and data-driven approaches that advance the science of water and its management. Submissions are evaluated for their novelty, accuracy, significance, and broader implications of the findings.