通过内向外阴离子置换引发不对称层置换极化和氧化还原双位点活化,实现高效二氧化碳光电还原

IF 27.4 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Yutang Yu, Zijian Zhu, Fang Chen, Tianyi Ma, Hongwei Huang
{"title":"通过内向外阴离子置换引发不对称层置换极化和氧化还原双位点活化,实现高效二氧化碳光电还原","authors":"Yutang Yu, Zijian Zhu, Fang Chen, Tianyi Ma, Hongwei Huang","doi":"10.1002/adma.202413835","DOIUrl":null,"url":null,"abstract":"Sluggish bulk charge transfer and barren catalytic sites severely hinder the CO<sub>2</sub> photoreduction process. Seeking strategies for accelerating charge dynamics and activating reduction and oxidation sites synchronously presents a huge challenge. Herein, an inside-out chlorine (Cl) ions substitution strategy on the layered polar Bi<sub>4</sub>O<sub>5</sub>Br<sub>2</sub> is proposed for achieving layer structure-dependent polarization effect and redox dual-sites activation. Cl ions in the bulk phase shrink the halogen layer interspace by 8‰, triggering asymmetric [Bi<sub>4</sub>O<sub>5</sub>]<sup>2+</sup> layer displacement polarization, prolonging the average photocharge lifetime to 201.8 ps. Meanwhile, surface substituted Cl ions enhance the electron-donating capability of neighboring Bi atoms, activating the intrinsic Bi reduction sites, and increasing H<sub>2</sub>O molecule adsorption on nearby intrinsic O oxidation site (cal. by 0.105 eV), also self-donating as an alien oxidation site. Besides, Cl upshifts the p-band center closer to the Fermi level, facilitating the reactant adsorption. Therefore, the energy barrier for CO<sub>2</sub> activation and rate-limiting <sup>*</sup>COOH intermediate formation steps are significantly decreased. Without cocatalysts and sacrificial reagents, inside-out Cl-substituted Bi<sub>4</sub>O<sub>5</sub>Br<sub>2</sub> delivers a remarkable CO<sub>2</sub>-to-CO photoreduction rate of 50.18 µmol g<sup>−1</sup> h<sup>−1</sup>, being one of the state-of-the-art catalysts. This finding offers insights into exploiting polarization at the molecular-level and enhances understanding of catalytic site activation.","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":null,"pages":null},"PeriodicalIF":27.4000,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Triggering Asymmetric Layer Displacement Polarization and Redox Dual-Sites Activation by Inside-Out Anion Substitution for Efficient CO2 Photoreduction\",\"authors\":\"Yutang Yu, Zijian Zhu, Fang Chen, Tianyi Ma, Hongwei Huang\",\"doi\":\"10.1002/adma.202413835\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Sluggish bulk charge transfer and barren catalytic sites severely hinder the CO<sub>2</sub> photoreduction process. Seeking strategies for accelerating charge dynamics and activating reduction and oxidation sites synchronously presents a huge challenge. Herein, an inside-out chlorine (Cl) ions substitution strategy on the layered polar Bi<sub>4</sub>O<sub>5</sub>Br<sub>2</sub> is proposed for achieving layer structure-dependent polarization effect and redox dual-sites activation. Cl ions in the bulk phase shrink the halogen layer interspace by 8‰, triggering asymmetric [Bi<sub>4</sub>O<sub>5</sub>]<sup>2+</sup> layer displacement polarization, prolonging the average photocharge lifetime to 201.8 ps. Meanwhile, surface substituted Cl ions enhance the electron-donating capability of neighboring Bi atoms, activating the intrinsic Bi reduction sites, and increasing H<sub>2</sub>O molecule adsorption on nearby intrinsic O oxidation site (cal. by 0.105 eV), also self-donating as an alien oxidation site. Besides, Cl upshifts the p-band center closer to the Fermi level, facilitating the reactant adsorption. Therefore, the energy barrier for CO<sub>2</sub> activation and rate-limiting <sup>*</sup>COOH intermediate formation steps are significantly decreased. Without cocatalysts and sacrificial reagents, inside-out Cl-substituted Bi<sub>4</sub>O<sub>5</sub>Br<sub>2</sub> delivers a remarkable CO<sub>2</sub>-to-CO photoreduction rate of 50.18 µmol g<sup>−1</sup> h<sup>−1</sup>, being one of the state-of-the-art catalysts. This finding offers insights into exploiting polarization at the molecular-level and enhances understanding of catalytic site activation.\",\"PeriodicalId\":114,\"journal\":{\"name\":\"Advanced Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":27.4000,\"publicationDate\":\"2024-10-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/adma.202413835\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adma.202413835","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

缓慢的体电荷转移和贫瘠的催化位点严重阻碍了二氧化碳的光还原过程。寻求加速电荷动态、同步激活还原和氧化位点的策略是一项巨大的挑战。本文提出了一种在层状极性 Bi4O5Br2 上由内向外的氯离子(Cl)置换策略,以实现与层状结构相关的极化效应和氧化还原双位点激活。体相中的 Cl 离子将卤素层间隙缩小了 8‰,引发了不对称的 [Bi4O5]2+ 层位移极化,将平均光荷寿命延长至 201.8 ps。同时,表面取代的 Cl 离子增强了邻近 Bi 原子的电子捐献能力,激活了本征 Bi 的还原位点,并增加了 H2O 分子在邻近本征 O 氧化位点上的吸附(热量增加了 0.105 eV),也作为外来氧化位点进行了自我捐献。此外,Cl 上移了 p 带中心,使其更接近费米级,从而促进了反应物的吸附。因此,二氧化碳活化和限速 *COOH 中间体形成步骤的能量障碍显著降低。在不使用助催化剂和牺牲试剂的情况下,由内而外的 Cl 取代 Bi4O5Br2 可实现 50.18 µmol g-1 h-1 的 CO2 到 CO 的显著光还原速率,是最先进的催化剂之一。这一发现为在分子水平上利用极化提供了见解,并加深了对催化位点活化的理解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Triggering Asymmetric Layer Displacement Polarization and Redox Dual-Sites Activation by Inside-Out Anion Substitution for Efficient CO2 Photoreduction

Triggering Asymmetric Layer Displacement Polarization and Redox Dual-Sites Activation by Inside-Out Anion Substitution for Efficient CO2 Photoreduction
Sluggish bulk charge transfer and barren catalytic sites severely hinder the CO2 photoreduction process. Seeking strategies for accelerating charge dynamics and activating reduction and oxidation sites synchronously presents a huge challenge. Herein, an inside-out chlorine (Cl) ions substitution strategy on the layered polar Bi4O5Br2 is proposed for achieving layer structure-dependent polarization effect and redox dual-sites activation. Cl ions in the bulk phase shrink the halogen layer interspace by 8‰, triggering asymmetric [Bi4O5]2+ layer displacement polarization, prolonging the average photocharge lifetime to 201.8 ps. Meanwhile, surface substituted Cl ions enhance the electron-donating capability of neighboring Bi atoms, activating the intrinsic Bi reduction sites, and increasing H2O molecule adsorption on nearby intrinsic O oxidation site (cal. by 0.105 eV), also self-donating as an alien oxidation site. Besides, Cl upshifts the p-band center closer to the Fermi level, facilitating the reactant adsorption. Therefore, the energy barrier for CO2 activation and rate-limiting *COOH intermediate formation steps are significantly decreased. Without cocatalysts and sacrificial reagents, inside-out Cl-substituted Bi4O5Br2 delivers a remarkable CO2-to-CO photoreduction rate of 50.18 µmol g−1 h−1, being one of the state-of-the-art catalysts. This finding offers insights into exploiting polarization at the molecular-level and enhances understanding of catalytic site activation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Materials
Advanced Materials 工程技术-材料科学:综合
CiteScore
43.00
自引率
4.10%
发文量
2182
审稿时长
2 months
期刊介绍: Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信