{"title":"通过低秩正则化实现样本高效非参数回归","authors":"Jiakun Jiang, Jiahao Peng, Heng Lian","doi":"10.1080/10618600.2024.2414891","DOIUrl":null,"url":null,"abstract":"Nonparametric regression suffers from curse of dimensionality, requiring a relatively large sample size for accurate estimation beyond the univariate case. In this paper, we consider a simple metho...","PeriodicalId":15422,"journal":{"name":"Journal of Computational and Graphical Statistics","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sample efficient nonparametric regression via low-rank regularization\",\"authors\":\"Jiakun Jiang, Jiahao Peng, Heng Lian\",\"doi\":\"10.1080/10618600.2024.2414891\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Nonparametric regression suffers from curse of dimensionality, requiring a relatively large sample size for accurate estimation beyond the univariate case. In this paper, we consider a simple metho...\",\"PeriodicalId\":15422,\"journal\":{\"name\":\"Journal of Computational and Graphical Statistics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-10-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computational and Graphical Statistics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1080/10618600.2024.2414891\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational and Graphical Statistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/10618600.2024.2414891","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0
摘要
非参数回归存在 "维度诅咒"(curse of dimensionality),需要相对较大的样本量才能进行超出单变量情况的精确估计。在本文中,我们考虑了一种简单的方法。
Sample efficient nonparametric regression via low-rank regularization
Nonparametric regression suffers from curse of dimensionality, requiring a relatively large sample size for accurate estimation beyond the univariate case. In this paper, we consider a simple metho...
期刊介绍:
The Journal of Computational and Graphical Statistics (JCGS) presents the very latest techniques on improving and extending the use of computational and graphical methods in statistics and data analysis. Established in 1992, this journal contains cutting-edge research, data, surveys, and more on numerical graphical displays and methods, and perception. Articles are written for readers who have a strong background in statistics but are not necessarily experts in computing. Published in March, June, September, and December.