Na-Yeon Shin, Daehyun Kang, Daehyun Kim, June-Yi Lee, Jong-Seong Kug
{"title":"关于北方夏季 MJO 可预测性的数据驱动调查","authors":"Na-Yeon Shin, Daehyun Kang, Daehyun Kim, June-Yi Lee, Jong-Seong Kug","doi":"10.1038/s41612-024-00799-8","DOIUrl":null,"url":null,"abstract":"The summer MJO exhibits different characteristics from its winter counterpart, particularly distinguished by propagation in both eastward and northward directions, which is relatively less understood. Here, we explore the primary sources of the summer MJO predictability using Machine Learning (ML) based on the long-term climate model simulation and its transfer learning with the observational data. Our ML-based summer MJO prediction model shows a correlation skill of 0.5 at about 24-day forecast lead time. By utilizing eXplainable Artificial Intelligence (XAI), we discern Precipitable Water (PW) and Surface Temperature (TS) as the most influential sources for the summer MJO predictability. We especially identify the roles of PW and TS in the eastern and northern Indian Ocean (EIO and NIO) regions on the propagation characteristics of the summer MJO through XAI-based sensitivity experiments. These results suggest that ML-based approaches are useful for identifying sources of predictability and their roles in climate phenomena.","PeriodicalId":19438,"journal":{"name":"npj Climate and Atmospheric Science","volume":" ","pages":"1-11"},"PeriodicalIF":8.5000,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41612-024-00799-8.pdf","citationCount":"0","resultStr":"{\"title\":\"Data-driven investigation on the boreal summer MJO predictability\",\"authors\":\"Na-Yeon Shin, Daehyun Kang, Daehyun Kim, June-Yi Lee, Jong-Seong Kug\",\"doi\":\"10.1038/s41612-024-00799-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The summer MJO exhibits different characteristics from its winter counterpart, particularly distinguished by propagation in both eastward and northward directions, which is relatively less understood. Here, we explore the primary sources of the summer MJO predictability using Machine Learning (ML) based on the long-term climate model simulation and its transfer learning with the observational data. Our ML-based summer MJO prediction model shows a correlation skill of 0.5 at about 24-day forecast lead time. By utilizing eXplainable Artificial Intelligence (XAI), we discern Precipitable Water (PW) and Surface Temperature (TS) as the most influential sources for the summer MJO predictability. We especially identify the roles of PW and TS in the eastern and northern Indian Ocean (EIO and NIO) regions on the propagation characteristics of the summer MJO through XAI-based sensitivity experiments. These results suggest that ML-based approaches are useful for identifying sources of predictability and their roles in climate phenomena.\",\"PeriodicalId\":19438,\"journal\":{\"name\":\"npj Climate and Atmospheric Science\",\"volume\":\" \",\"pages\":\"1-11\"},\"PeriodicalIF\":8.5000,\"publicationDate\":\"2024-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.nature.com/articles/s41612-024-00799-8.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"npj Climate and Atmospheric Science\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.nature.com/articles/s41612-024-00799-8\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Climate and Atmospheric Science","FirstCategoryId":"89","ListUrlMain":"https://www.nature.com/articles/s41612-024-00799-8","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
Data-driven investigation on the boreal summer MJO predictability
The summer MJO exhibits different characteristics from its winter counterpart, particularly distinguished by propagation in both eastward and northward directions, which is relatively less understood. Here, we explore the primary sources of the summer MJO predictability using Machine Learning (ML) based on the long-term climate model simulation and its transfer learning with the observational data. Our ML-based summer MJO prediction model shows a correlation skill of 0.5 at about 24-day forecast lead time. By utilizing eXplainable Artificial Intelligence (XAI), we discern Precipitable Water (PW) and Surface Temperature (TS) as the most influential sources for the summer MJO predictability. We especially identify the roles of PW and TS in the eastern and northern Indian Ocean (EIO and NIO) regions on the propagation characteristics of the summer MJO through XAI-based sensitivity experiments. These results suggest that ML-based approaches are useful for identifying sources of predictability and their roles in climate phenomena.
期刊介绍:
npj Climate and Atmospheric Science is an open-access journal encompassing the relevant physical, chemical, and biological aspects of atmospheric and climate science. The journal places particular emphasis on regional studies that unveil new insights into specific localities, including examinations of local atmospheric composition, such as aerosols.
The range of topics covered by the journal includes climate dynamics, climate variability, weather and climate prediction, climate change, ocean dynamics, weather extremes, air pollution, atmospheric chemistry (including aerosols), the hydrological cycle, and atmosphere–ocean and atmosphere–land interactions. The journal welcomes studies employing a diverse array of methods, including numerical and statistical modeling, the development and application of in situ observational techniques, remote sensing, and the development or evaluation of new reanalyses.