{"title":"利用节点-地点模型和数据包络分析进行土地利用与交通互动的开发和平衡评估","authors":"Xiaoyi Ma, Hongjie He, Mingmin Liu, An Jin","doi":"10.1155/2024/5565573","DOIUrl":null,"url":null,"abstract":"<div>\n <p>To meet the evolving demands of land use and transport interaction (LUTI) assessment within China’s national territory spatial planning (NTSP) system, this paper introduces the level of development (LoD) and the level of matching (LoM) evaluation models, based on the traffic facility and land use factors. The LoD model, founded on the modified node-place model, provides a comprehensive assessment of the traffic facility and land use development scales. Conversely, the LoM model, grounded in data envelopment analysis methods, evaluates the relative relationship between transport services and the travel demand generated by land use. The integrated use of LoD and LoM can both reflect the development scale and matching status between traffic services and travel activities, which are crucial contents in the planning works, especially within the NTSP framework. The proposed models are tested in the city of Guangzhou, and the LoD values exhibit peaks in central urban zones, suburban towns, and areas adjacent to railway transit, with a decline observed in rural farmland and ecological regions. In contrast, the LoM distribution performs a distinct pattern, highlighting numerous underperforming areas with congestion or idle problems in urban centers, alongside well-coordinated regions showcasing a balance between traffic facilities and land uses in rural regions. Furthermore, the LoM scores revealed frequent instances of facility crowding in urban regions and intensive occurrences of facility idleness in rural areas. By marking regions with low LoD scores, the LoD model finds suitable application in determining the urban development border, essential for restricting land development and preserving farmland and ecological areas. Meanwhile, LoM aids in improving urban renewal efforts by assessing and optimizing the balance between intensive land uses and limited traffic facilities. Validated against the existing metrics, the combined use of LoD and LoM efficiently captures the most details of the LUTI process at the lowest computational cost.</p>\n </div>","PeriodicalId":50259,"journal":{"name":"Journal of Advanced Transportation","volume":"2024 1","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/2024/5565573","citationCount":"0","resultStr":"{\"title\":\"Development and Balance Evaluation for Land Use and Transport Interaction Using Node-Place Model and Data Envelopment Analysis\",\"authors\":\"Xiaoyi Ma, Hongjie He, Mingmin Liu, An Jin\",\"doi\":\"10.1155/2024/5565573\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n <p>To meet the evolving demands of land use and transport interaction (LUTI) assessment within China’s national territory spatial planning (NTSP) system, this paper introduces the level of development (LoD) and the level of matching (LoM) evaluation models, based on the traffic facility and land use factors. The LoD model, founded on the modified node-place model, provides a comprehensive assessment of the traffic facility and land use development scales. Conversely, the LoM model, grounded in data envelopment analysis methods, evaluates the relative relationship between transport services and the travel demand generated by land use. The integrated use of LoD and LoM can both reflect the development scale and matching status between traffic services and travel activities, which are crucial contents in the planning works, especially within the NTSP framework. The proposed models are tested in the city of Guangzhou, and the LoD values exhibit peaks in central urban zones, suburban towns, and areas adjacent to railway transit, with a decline observed in rural farmland and ecological regions. In contrast, the LoM distribution performs a distinct pattern, highlighting numerous underperforming areas with congestion or idle problems in urban centers, alongside well-coordinated regions showcasing a balance between traffic facilities and land uses in rural regions. Furthermore, the LoM scores revealed frequent instances of facility crowding in urban regions and intensive occurrences of facility idleness in rural areas. By marking regions with low LoD scores, the LoD model finds suitable application in determining the urban development border, essential for restricting land development and preserving farmland and ecological areas. Meanwhile, LoM aids in improving urban renewal efforts by assessing and optimizing the balance between intensive land uses and limited traffic facilities. Validated against the existing metrics, the combined use of LoD and LoM efficiently captures the most details of the LUTI process at the lowest computational cost.</p>\\n </div>\",\"PeriodicalId\":50259,\"journal\":{\"name\":\"Journal of Advanced Transportation\",\"volume\":\"2024 1\",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1155/2024/5565573\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Advanced Transportation\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1155/2024/5565573\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Advanced Transportation","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/2024/5565573","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
Development and Balance Evaluation for Land Use and Transport Interaction Using Node-Place Model and Data Envelopment Analysis
To meet the evolving demands of land use and transport interaction (LUTI) assessment within China’s national territory spatial planning (NTSP) system, this paper introduces the level of development (LoD) and the level of matching (LoM) evaluation models, based on the traffic facility and land use factors. The LoD model, founded on the modified node-place model, provides a comprehensive assessment of the traffic facility and land use development scales. Conversely, the LoM model, grounded in data envelopment analysis methods, evaluates the relative relationship between transport services and the travel demand generated by land use. The integrated use of LoD and LoM can both reflect the development scale and matching status between traffic services and travel activities, which are crucial contents in the planning works, especially within the NTSP framework. The proposed models are tested in the city of Guangzhou, and the LoD values exhibit peaks in central urban zones, suburban towns, and areas adjacent to railway transit, with a decline observed in rural farmland and ecological regions. In contrast, the LoM distribution performs a distinct pattern, highlighting numerous underperforming areas with congestion or idle problems in urban centers, alongside well-coordinated regions showcasing a balance between traffic facilities and land uses in rural regions. Furthermore, the LoM scores revealed frequent instances of facility crowding in urban regions and intensive occurrences of facility idleness in rural areas. By marking regions with low LoD scores, the LoD model finds suitable application in determining the urban development border, essential for restricting land development and preserving farmland and ecological areas. Meanwhile, LoM aids in improving urban renewal efforts by assessing and optimizing the balance between intensive land uses and limited traffic facilities. Validated against the existing metrics, the combined use of LoD and LoM efficiently captures the most details of the LUTI process at the lowest computational cost.
期刊介绍:
The Journal of Advanced Transportation (JAT) is a fully peer reviewed international journal in transportation research areas related to public transit, road traffic, transport networks and air transport.
It publishes theoretical and innovative papers on analysis, design, operations, optimization and planning of multi-modal transport networks, transit & traffic systems, transport technology and traffic safety. Urban rail and bus systems, Pedestrian studies, traffic flow theory and control, Intelligent Transport Systems (ITS) and automated and/or connected vehicles are some topics of interest.
Highway engineering, railway engineering and logistics do not fall within the aims and scope of JAT.