{"title":"纤维积的卡坦投影和非等轴等距嵌入","authors":"Konstantinos Tsouvalas","doi":"10.1112/jlms.70004","DOIUrl":null,"url":null,"abstract":"<p>Let <span></span><math>\n <semantics>\n <mi>Γ</mi>\n <annotation>$\\Gamma$</annotation>\n </semantics></math> be a finitely generated group and <span></span><math>\n <semantics>\n <mi>N</mi>\n <annotation>$N$</annotation>\n </semantics></math> be a normal subgroup of <span></span><math>\n <semantics>\n <mi>Γ</mi>\n <annotation>$\\Gamma$</annotation>\n </semantics></math>. The fiber product of <span></span><math>\n <semantics>\n <mi>Γ</mi>\n <annotation>$\\Gamma$</annotation>\n </semantics></math> with respect to <span></span><math>\n <semantics>\n <mi>N</mi>\n <annotation>$N$</annotation>\n </semantics></math> is the subgroup <span></span><math>\n <semantics>\n <mrow>\n <mi>Γ</mi>\n <msub>\n <mo>×</mo>\n <mi>N</mi>\n </msub>\n <mi>Γ</mi>\n <mo>=</mo>\n <mo>{</mo>\n <mrow>\n <mo>(</mo>\n <mi>γ</mi>\n <mo>,</mo>\n <mi>γ</mi>\n <mi>w</mi>\n <mo>)</mo>\n </mrow>\n <mo>:</mo>\n <mi>γ</mi>\n <mo>∈</mo>\n <mi>Γ</mi>\n <mo>,</mo>\n <mi>w</mi>\n <mo>∈</mo>\n <mi>N</mi>\n <mo>}</mo>\n </mrow>\n <annotation>$\\Gamma \\times _N \\Gamma =\\big \\lbrace (\\gamma, \\gamma w): \\gamma \\in \\Gamma, w \\in N\\big \\rbrace$</annotation>\n </semantics></math> of the direct product <span></span><math>\n <semantics>\n <mrow>\n <mi>Γ</mi>\n <mo>×</mo>\n <mi>Γ</mi>\n </mrow>\n <annotation>$\\Gamma \\times \\Gamma$</annotation>\n </semantics></math>. For every representation <span></span><math>\n <semantics>\n <mrow>\n <mi>ρ</mi>\n <mo>:</mo>\n <mi>Γ</mi>\n <msub>\n <mo>×</mo>\n <mi>N</mi>\n </msub>\n <mi>Γ</mi>\n <mo>→</mo>\n <msub>\n <mi>GL</mi>\n <mi>d</mi>\n </msub>\n <mrow>\n <mo>(</mo>\n <mi>k</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$\\rho:\\Gamma \\times _N \\Gamma \\rightarrow \\mathsf {GL}_d(k)$</annotation>\n </semantics></math>, where <span></span><math>\n <semantics>\n <mi>k</mi>\n <annotation>$k$</annotation>\n </semantics></math> is a local field, we establish upper bounds for the norm of the Cartan projection of <span></span><math>\n <semantics>\n <mi>ρ</mi>\n <annotation>$\\rho$</annotation>\n </semantics></math> in terms of a fixed word length function on <span></span><math>\n <semantics>\n <mi>Γ</mi>\n <annotation>$\\Gamma$</annotation>\n </semantics></math>. As an application, we exhibit examples of finitely generated and finitely presented fiber products <span></span><math>\n <semantics>\n <mrow>\n <mi>P</mi>\n <mo>=</mo>\n <mi>Γ</mi>\n <msub>\n <mo>×</mo>\n <mi>N</mi>\n </msub>\n <mi>Γ</mi>\n </mrow>\n <annotation>$P=\\Gamma \\times _N \\Gamma$</annotation>\n </semantics></math>, where <span></span><math>\n <semantics>\n <mi>Γ</mi>\n <annotation>$\\Gamma$</annotation>\n </semantics></math> is linear and Gromov hyperbolic, such that <span></span><math>\n <semantics>\n <mi>P</mi>\n <annotation>$P$</annotation>\n </semantics></math> does not admit linear representations that are quasi-isometric embeddings.</p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cartan projections of fiber products and non-quasi-isometric embeddings\",\"authors\":\"Konstantinos Tsouvalas\",\"doi\":\"10.1112/jlms.70004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Let <span></span><math>\\n <semantics>\\n <mi>Γ</mi>\\n <annotation>$\\\\Gamma$</annotation>\\n </semantics></math> be a finitely generated group and <span></span><math>\\n <semantics>\\n <mi>N</mi>\\n <annotation>$N$</annotation>\\n </semantics></math> be a normal subgroup of <span></span><math>\\n <semantics>\\n <mi>Γ</mi>\\n <annotation>$\\\\Gamma$</annotation>\\n </semantics></math>. The fiber product of <span></span><math>\\n <semantics>\\n <mi>Γ</mi>\\n <annotation>$\\\\Gamma$</annotation>\\n </semantics></math> with respect to <span></span><math>\\n <semantics>\\n <mi>N</mi>\\n <annotation>$N$</annotation>\\n </semantics></math> is the subgroup <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>Γ</mi>\\n <msub>\\n <mo>×</mo>\\n <mi>N</mi>\\n </msub>\\n <mi>Γ</mi>\\n <mo>=</mo>\\n <mo>{</mo>\\n <mrow>\\n <mo>(</mo>\\n <mi>γ</mi>\\n <mo>,</mo>\\n <mi>γ</mi>\\n <mi>w</mi>\\n <mo>)</mo>\\n </mrow>\\n <mo>:</mo>\\n <mi>γ</mi>\\n <mo>∈</mo>\\n <mi>Γ</mi>\\n <mo>,</mo>\\n <mi>w</mi>\\n <mo>∈</mo>\\n <mi>N</mi>\\n <mo>}</mo>\\n </mrow>\\n <annotation>$\\\\Gamma \\\\times _N \\\\Gamma =\\\\big \\\\lbrace (\\\\gamma, \\\\gamma w): \\\\gamma \\\\in \\\\Gamma, w \\\\in N\\\\big \\\\rbrace$</annotation>\\n </semantics></math> of the direct product <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>Γ</mi>\\n <mo>×</mo>\\n <mi>Γ</mi>\\n </mrow>\\n <annotation>$\\\\Gamma \\\\times \\\\Gamma$</annotation>\\n </semantics></math>. For every representation <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>ρ</mi>\\n <mo>:</mo>\\n <mi>Γ</mi>\\n <msub>\\n <mo>×</mo>\\n <mi>N</mi>\\n </msub>\\n <mi>Γ</mi>\\n <mo>→</mo>\\n <msub>\\n <mi>GL</mi>\\n <mi>d</mi>\\n </msub>\\n <mrow>\\n <mo>(</mo>\\n <mi>k</mi>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation>$\\\\rho:\\\\Gamma \\\\times _N \\\\Gamma \\\\rightarrow \\\\mathsf {GL}_d(k)$</annotation>\\n </semantics></math>, where <span></span><math>\\n <semantics>\\n <mi>k</mi>\\n <annotation>$k$</annotation>\\n </semantics></math> is a local field, we establish upper bounds for the norm of the Cartan projection of <span></span><math>\\n <semantics>\\n <mi>ρ</mi>\\n <annotation>$\\\\rho$</annotation>\\n </semantics></math> in terms of a fixed word length function on <span></span><math>\\n <semantics>\\n <mi>Γ</mi>\\n <annotation>$\\\\Gamma$</annotation>\\n </semantics></math>. As an application, we exhibit examples of finitely generated and finitely presented fiber products <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>P</mi>\\n <mo>=</mo>\\n <mi>Γ</mi>\\n <msub>\\n <mo>×</mo>\\n <mi>N</mi>\\n </msub>\\n <mi>Γ</mi>\\n </mrow>\\n <annotation>$P=\\\\Gamma \\\\times _N \\\\Gamma$</annotation>\\n </semantics></math>, where <span></span><math>\\n <semantics>\\n <mi>Γ</mi>\\n <annotation>$\\\\Gamma$</annotation>\\n </semantics></math> is linear and Gromov hyperbolic, such that <span></span><math>\\n <semantics>\\n <mi>P</mi>\\n <annotation>$P$</annotation>\\n </semantics></math> does not admit linear representations that are quasi-isometric embeddings.</p>\",\"PeriodicalId\":49989,\"journal\":{\"name\":\"Journal of the London Mathematical Society-Second Series\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-10-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the London Mathematical Society-Second Series\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1112/jlms.70004\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the London Mathematical Society-Second Series","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/jlms.70004","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
让 Γ $\Gamma$ 是一个有限生成的群,N $N$ 是 Γ $\Gamma$ 的一个正则子群。关于 N $N$ 的 Γ $\Gamma$ 的纤维积是子群 Γ × N Γ = { ( γ , γ w ) : γ ∈ Γ , w ∈ N } 。 $\Gamma \times _N \Gamma =\big \lbrace (\gamma, \gamma w):\在 Γ × Γ $Gamma 的直接乘积 Γ × Γ $Gamma 中,w 在 N $Gamma 中。对于每一个表示 ρ : Γ × N Γ → GL d ( k ) $\rho:\Gamma \times _N \Gamma \rightarrow \mathsf {GL}_d(k)$,其中 k $k$ 是一个局部域,我们用Γ \ $Gamma$ 上的一个固定字长函数为 ρ $rho$ 的 Cartan 投影的规范建立了上限。作为应用,我们举例说明了有限生成和有限呈现的纤维积 P = Γ × N Γ $P=\Gamma \times _N \Gamma$ ,其中 Γ $\Gamma$ 是线性的和格罗莫夫双曲的,这样 P $P$ 就不包含准等距嵌入的线性表示。
Cartan projections of fiber products and non-quasi-isometric embeddings
Let be a finitely generated group and be a normal subgroup of . The fiber product of with respect to is the subgroup of the direct product . For every representation , where is a local field, we establish upper bounds for the norm of the Cartan projection of in terms of a fixed word length function on . As an application, we exhibit examples of finitely generated and finitely presented fiber products , where is linear and Gromov hyperbolic, such that does not admit linear representations that are quasi-isometric embeddings.
期刊介绍:
The Journal of the London Mathematical Society has been publishing leading research in a broad range of mathematical subject areas since 1926. The Journal welcomes papers on subjects of general interest that represent a significant advance in mathematical knowledge, as well as submissions that are deemed to stimulate new interest and research activity.