无 Lipschitz 的巴拿赫空间的等距性

IF 1 2区 数学 Q1 MATHEMATICS
Marek Cúth, Michal Doucha, Tamás Titkos
{"title":"无 Lipschitz 的巴拿赫空间的等距性","authors":"Marek Cúth,&nbsp;Michal Doucha,&nbsp;Tamás Titkos","doi":"10.1112/jlms.70000","DOIUrl":null,"url":null,"abstract":"<p>We describe surjective linear isometries and linear isometry groups of a large class of Lipschitz-free spaces that includes, for example, Lipschitz-free spaces over any graph. We define the notion of a Lipschitz-free rigid metric space whose Lipschitz-free space only admits surjective linear isometries coming from surjective dilations (i.e., rescaled isometries) of the metric space itself. We show that this class of metric spaces is surprisingly rich and contains all 3-connected graphs as well as geometric examples such as nonabelian Carnot groups with horizontally strictly convex norms. We prove that every metric space isometrically embeds into a Lipschitz-free rigid space that has only three more points.</p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/jlms.70000","citationCount":"0","resultStr":"{\"title\":\"Isometries of Lipschitz-free Banach spaces\",\"authors\":\"Marek Cúth,&nbsp;Michal Doucha,&nbsp;Tamás Titkos\",\"doi\":\"10.1112/jlms.70000\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We describe surjective linear isometries and linear isometry groups of a large class of Lipschitz-free spaces that includes, for example, Lipschitz-free spaces over any graph. We define the notion of a Lipschitz-free rigid metric space whose Lipschitz-free space only admits surjective linear isometries coming from surjective dilations (i.e., rescaled isometries) of the metric space itself. We show that this class of metric spaces is surprisingly rich and contains all 3-connected graphs as well as geometric examples such as nonabelian Carnot groups with horizontally strictly convex norms. We prove that every metric space isometrically embeds into a Lipschitz-free rigid space that has only three more points.</p>\",\"PeriodicalId\":49989,\"journal\":{\"name\":\"Journal of the London Mathematical Society-Second Series\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-10-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1112/jlms.70000\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the London Mathematical Society-Second Series\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1112/jlms.70000\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the London Mathematical Society-Second Series","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/jlms.70000","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们描述了一大类无 Lipschitz 空间的投射线性等轴线和线性等轴线群,这些空间包括任何图形上的无 Lipschitz 空间等。我们定义了无Lipschitz刚性度量空间的概念,其Lipschitz-free空间只接受来自度量空间本身的投射扩张(即重标等距)的投射线性等距。我们证明了这一类度量空间的丰富程度令人惊讶,它包含了所有三连图以及几何实例,如具有水平严格凸规范的非阿贝尔卡诺群。我们证明,每个度量空间都等距嵌入到一个只有三个点的无 Lipschitz 刚体空间中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Isometries of Lipschitz-free Banach spaces

Isometries of Lipschitz-free Banach spaces

We describe surjective linear isometries and linear isometry groups of a large class of Lipschitz-free spaces that includes, for example, Lipschitz-free spaces over any graph. We define the notion of a Lipschitz-free rigid metric space whose Lipschitz-free space only admits surjective linear isometries coming from surjective dilations (i.e., rescaled isometries) of the metric space itself. We show that this class of metric spaces is surprisingly rich and contains all 3-connected graphs as well as geometric examples such as nonabelian Carnot groups with horizontally strictly convex norms. We prove that every metric space isometrically embeds into a Lipschitz-free rigid space that has only three more points.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
186
审稿时长
6-12 weeks
期刊介绍: The Journal of the London Mathematical Society has been publishing leading research in a broad range of mathematical subject areas since 1926. The Journal welcomes papers on subjects of general interest that represent a significant advance in mathematical knowledge, as well as submissions that are deemed to stimulate new interest and research activity.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信