Lei Fan, Guanyu Dong, Philippe Ciais, Xiangming Xiao, Jingfeng Xiao, Xiuzhi Chen, Yiqi Luo, Shuli Niu, Fei Jiang, Frédéric Frappart, Jean-Pierre Wigneron, Xing Li, Tianxiang Cui, Li Pan, Rasmus Fensholt
{"title":"热带总初级生产力对降水异常的负不对称响应","authors":"Lei Fan, Guanyu Dong, Philippe Ciais, Xiangming Xiao, Jingfeng Xiao, Xiuzhi Chen, Yiqi Luo, Shuli Niu, Fei Jiang, Frédéric Frappart, Jean-Pierre Wigneron, Xing Li, Tianxiang Cui, Li Pan, Rasmus Fensholt","doi":"10.1029/2024EF004760","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n \n <p>The carbon sink in pantropical biomes play a crucial role in modulating the inter-annual variations of global terrestrial carbon balance and is threatened by extreme climate events. However, it has not been carefully examined whether an increase in tropical gross primary productivity (GPP) can compensate the decrease during precipitation anomalies. Using the asymmetry index (AI) and multiple GPP products, we assessed responses of pantropical GPP to precipitation anomalies during 2001–2022. Positive AI indicates that GPP increases are greater than GPP decreases during precipitation anomalies, and vice versa. Our results showed an average negative pantropical GPP asymmetry, that is, GPP decreases exceeded the GPP increases during precipitation anomalies. In addition, a positive AI was found in tropical hyper-arid and arid regions, which is opposite to the negative AI observed in tropical semi-arid, sub-humid, and humid regions. This suggest that tropical GPP asymmetry changes from positive to negative as the moisture increases. Notably, a significant decreasing trend of negative AI was observed over the entire tropical region, indicating that the negative effect of inter-annual precipitation variations on pantropical vegetation productivity has enhanced. Considering the model predicted increasing climate variability and extremes, the negative impact of precipitation variability on tropical carbon cycle may continue to intensify. Lastly, the divergence in AI estimates among multiple GPP products highlight the need to further improve our understanding of the response of tropical carbon cycle to climate changes, especially for the tropical humid regions.</p>\n </section>\n </div>","PeriodicalId":48748,"journal":{"name":"Earths Future","volume":"12 10","pages":""},"PeriodicalIF":7.3000,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024EF004760","citationCount":"0","resultStr":"{\"title\":\"Negative Asymmetric Response of Pantropical Gross Primary Productivity to Precipitation Anomalies\",\"authors\":\"Lei Fan, Guanyu Dong, Philippe Ciais, Xiangming Xiao, Jingfeng Xiao, Xiuzhi Chen, Yiqi Luo, Shuli Niu, Fei Jiang, Frédéric Frappart, Jean-Pierre Wigneron, Xing Li, Tianxiang Cui, Li Pan, Rasmus Fensholt\",\"doi\":\"10.1029/2024EF004760\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n \\n <section>\\n \\n <p>The carbon sink in pantropical biomes play a crucial role in modulating the inter-annual variations of global terrestrial carbon balance and is threatened by extreme climate events. However, it has not been carefully examined whether an increase in tropical gross primary productivity (GPP) can compensate the decrease during precipitation anomalies. Using the asymmetry index (AI) and multiple GPP products, we assessed responses of pantropical GPP to precipitation anomalies during 2001–2022. Positive AI indicates that GPP increases are greater than GPP decreases during precipitation anomalies, and vice versa. Our results showed an average negative pantropical GPP asymmetry, that is, GPP decreases exceeded the GPP increases during precipitation anomalies. In addition, a positive AI was found in tropical hyper-arid and arid regions, which is opposite to the negative AI observed in tropical semi-arid, sub-humid, and humid regions. This suggest that tropical GPP asymmetry changes from positive to negative as the moisture increases. Notably, a significant decreasing trend of negative AI was observed over the entire tropical region, indicating that the negative effect of inter-annual precipitation variations on pantropical vegetation productivity has enhanced. Considering the model predicted increasing climate variability and extremes, the negative impact of precipitation variability on tropical carbon cycle may continue to intensify. Lastly, the divergence in AI estimates among multiple GPP products highlight the need to further improve our understanding of the response of tropical carbon cycle to climate changes, especially for the tropical humid regions.</p>\\n </section>\\n </div>\",\"PeriodicalId\":48748,\"journal\":{\"name\":\"Earths Future\",\"volume\":\"12 10\",\"pages\":\"\"},\"PeriodicalIF\":7.3000,\"publicationDate\":\"2024-10-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024EF004760\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Earths Future\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1029/2024EF004760\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earths Future","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024EF004760","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Negative Asymmetric Response of Pantropical Gross Primary Productivity to Precipitation Anomalies
The carbon sink in pantropical biomes play a crucial role in modulating the inter-annual variations of global terrestrial carbon balance and is threatened by extreme climate events. However, it has not been carefully examined whether an increase in tropical gross primary productivity (GPP) can compensate the decrease during precipitation anomalies. Using the asymmetry index (AI) and multiple GPP products, we assessed responses of pantropical GPP to precipitation anomalies during 2001–2022. Positive AI indicates that GPP increases are greater than GPP decreases during precipitation anomalies, and vice versa. Our results showed an average negative pantropical GPP asymmetry, that is, GPP decreases exceeded the GPP increases during precipitation anomalies. In addition, a positive AI was found in tropical hyper-arid and arid regions, which is opposite to the negative AI observed in tropical semi-arid, sub-humid, and humid regions. This suggest that tropical GPP asymmetry changes from positive to negative as the moisture increases. Notably, a significant decreasing trend of negative AI was observed over the entire tropical region, indicating that the negative effect of inter-annual precipitation variations on pantropical vegetation productivity has enhanced. Considering the model predicted increasing climate variability and extremes, the negative impact of precipitation variability on tropical carbon cycle may continue to intensify. Lastly, the divergence in AI estimates among multiple GPP products highlight the need to further improve our understanding of the response of tropical carbon cycle to climate changes, especially for the tropical humid regions.
期刊介绍:
Earth’s Future: A transdisciplinary open access journal, Earth’s Future focuses on the state of the Earth and the prediction of the planet’s future. By publishing peer-reviewed articles as well as editorials, essays, reviews, and commentaries, this journal will be the preeminent scholarly resource on the Anthropocene. It will also help assess the risks and opportunities associated with environmental changes and challenges.