Sachin Kadian, Siba Sundar Sahoo, Pratima Kumari, Shubhangi Shukla, Roger J. Narayan
{"title":"使用碳涂层 3D 打印微针阵列微创检测丁丙诺啡","authors":"Sachin Kadian, Siba Sundar Sahoo, Pratima Kumari, Shubhangi Shukla, Roger J. Narayan","doi":"10.1007/s00604-024-06754-x","DOIUrl":null,"url":null,"abstract":"<div><p>A machine learning-assisted 3D-printed conducting microneedle-based electrochemical sensing platform was developed for wireless, efficient, economical, and selective determination of buprenorphine. The developed microneedle array-based sensing platform used 3D printing and air spray coating technologies for rapid and scalable manufacturing of a conducting microneedle surface. Upon optimization and understanding of the electrode stability, redox behavior, and electrochemical characteristics of as-prepared conducting microneedle array, the developed electrochemical platform was investigated for monitoring different levels of buprenorphine in the artificial intestinal fluid and found to be highly sensitive and selective towards buprenorphine for a wide detection range from 2 to 140 μM, with a low limit of detection of 0.129 μM. Furthermore, to make the sensing platform user accessible, the experimentally recorded sensing data was used to train a machine learning model and develop a web application for the numerical demonstration of buprenorphine levels at the point of site. Finally, the proof-of-concept study demonstrated that by advancing our prevailing 3D printing and additive manufacturing techniques, a low-cost, user-accessible, and compelling wearable electrochemical sensor could be manufactured for minimally invasive determination of buprenorphine in interstitial fluid.</p><h3>Graphical abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":705,"journal":{"name":"Microchimica Acta","volume":"191 11","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Minimally invasive detection of buprenorphine using a carbon-coated 3D-printed microneedle array\",\"authors\":\"Sachin Kadian, Siba Sundar Sahoo, Pratima Kumari, Shubhangi Shukla, Roger J. Narayan\",\"doi\":\"10.1007/s00604-024-06754-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A machine learning-assisted 3D-printed conducting microneedle-based electrochemical sensing platform was developed for wireless, efficient, economical, and selective determination of buprenorphine. The developed microneedle array-based sensing platform used 3D printing and air spray coating technologies for rapid and scalable manufacturing of a conducting microneedle surface. Upon optimization and understanding of the electrode stability, redox behavior, and electrochemical characteristics of as-prepared conducting microneedle array, the developed electrochemical platform was investigated for monitoring different levels of buprenorphine in the artificial intestinal fluid and found to be highly sensitive and selective towards buprenorphine for a wide detection range from 2 to 140 μM, with a low limit of detection of 0.129 μM. Furthermore, to make the sensing platform user accessible, the experimentally recorded sensing data was used to train a machine learning model and develop a web application for the numerical demonstration of buprenorphine levels at the point of site. Finally, the proof-of-concept study demonstrated that by advancing our prevailing 3D printing and additive manufacturing techniques, a low-cost, user-accessible, and compelling wearable electrochemical sensor could be manufactured for minimally invasive determination of buprenorphine in interstitial fluid.</p><h3>Graphical abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":705,\"journal\":{\"name\":\"Microchimica Acta\",\"volume\":\"191 11\",\"pages\":\"\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-10-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microchimica Acta\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00604-024-06754-x\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microchimica Acta","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s00604-024-06754-x","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
Minimally invasive detection of buprenorphine using a carbon-coated 3D-printed microneedle array
A machine learning-assisted 3D-printed conducting microneedle-based electrochemical sensing platform was developed for wireless, efficient, economical, and selective determination of buprenorphine. The developed microneedle array-based sensing platform used 3D printing and air spray coating technologies for rapid and scalable manufacturing of a conducting microneedle surface. Upon optimization and understanding of the electrode stability, redox behavior, and electrochemical characteristics of as-prepared conducting microneedle array, the developed electrochemical platform was investigated for monitoring different levels of buprenorphine in the artificial intestinal fluid and found to be highly sensitive and selective towards buprenorphine for a wide detection range from 2 to 140 μM, with a low limit of detection of 0.129 μM. Furthermore, to make the sensing platform user accessible, the experimentally recorded sensing data was used to train a machine learning model and develop a web application for the numerical demonstration of buprenorphine levels at the point of site. Finally, the proof-of-concept study demonstrated that by advancing our prevailing 3D printing and additive manufacturing techniques, a low-cost, user-accessible, and compelling wearable electrochemical sensor could be manufactured for minimally invasive determination of buprenorphine in interstitial fluid.
期刊介绍:
As a peer-reviewed journal for analytical sciences and technologies on the micro- and nanoscale, Microchimica Acta has established itself as a premier forum for truly novel approaches in chemical and biochemical analysis. Coverage includes methods and devices that provide expedient solutions to the most contemporary demands in this area. Examples are point-of-care technologies, wearable (bio)sensors, in-vivo-monitoring, micro/nanomotors and materials based on synthetic biology as well as biomedical imaging and targeting.