具有等离子铋诱导稳定性的三S型BiOBr@LaNiO3/CuBi2O4/Bi2WO6异质结:偏离四S型和机理研究

IF 23.2 2区 材料科学 Q1 MATERIALS SCIENCE, COMPOSITES
Mope Edwin Malefane, Joyce Tsepiso Khutlane, Muthumuni Managa, Cornelia Gertina Catharina Elizabeth van Sittert, Thabo Thokozani Innocent Nkambule, Alex Tawanda Kuvarega
{"title":"具有等离子铋诱导稳定性的三S型BiOBr@LaNiO3/CuBi2O4/Bi2WO6异质结:偏离四S型和机理研究","authors":"Mope Edwin Malefane,&nbsp;Joyce Tsepiso Khutlane,&nbsp;Muthumuni Managa,&nbsp;Cornelia Gertina Catharina Elizabeth van Sittert,&nbsp;Thabo Thokozani Innocent Nkambule,&nbsp;Alex Tawanda Kuvarega","doi":"10.1007/s42114-024-01014-1","DOIUrl":null,"url":null,"abstract":"<div><p>The investigation and understanding of heterointerfaces formation and charge transfer dynamics in two or more semiconductor heterojunctions increased ensuing establishment of S-scheme and dual S-scheme heterojunctions. However, investigations of possible charge transfer at interfaces and their type in four component systems are limited. Herein, a four-component heterojunction was investigated to postulate and demonstrate deviation between quadruple and triple S-scheme heterojunctions possibilities using LaNiO<sub>3</sub>, BiOBr, CuBi<sub>2</sub>O<sub>4</sub>, and Bi<sub>2</sub>WO<sub>6</sub>. DFT and XPS were used to construct the band structure and support the charge transfer at the interfaces to follow S-S strategy during OTC and SMX degradation under visible light. IEF, bend bending systematically modulated charge transfer, and the core-shell strategy restricted possible junctions’ formation to three to accord triple S-scheme heterojunction. This work demonstrated the construction of Triple S-scheme heterostructures as a promising strategy for efficient charge separation making it a suitable candidate for elimination of pollutants.</p></div>","PeriodicalId":7220,"journal":{"name":"Advanced Composites and Hybrid Materials","volume":"7 5","pages":""},"PeriodicalIF":23.2000,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s42114-024-01014-1.pdf","citationCount":"0","resultStr":"{\"title\":\"Triple S-scheme BiOBr@LaNiO3/CuBi2O4/Bi2WO6 heterojunction with plasmonic Bi-induced stability: deviation from quadruple S-scheme and mechanistic investigation\",\"authors\":\"Mope Edwin Malefane,&nbsp;Joyce Tsepiso Khutlane,&nbsp;Muthumuni Managa,&nbsp;Cornelia Gertina Catharina Elizabeth van Sittert,&nbsp;Thabo Thokozani Innocent Nkambule,&nbsp;Alex Tawanda Kuvarega\",\"doi\":\"10.1007/s42114-024-01014-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The investigation and understanding of heterointerfaces formation and charge transfer dynamics in two or more semiconductor heterojunctions increased ensuing establishment of S-scheme and dual S-scheme heterojunctions. However, investigations of possible charge transfer at interfaces and their type in four component systems are limited. Herein, a four-component heterojunction was investigated to postulate and demonstrate deviation between quadruple and triple S-scheme heterojunctions possibilities using LaNiO<sub>3</sub>, BiOBr, CuBi<sub>2</sub>O<sub>4</sub>, and Bi<sub>2</sub>WO<sub>6</sub>. DFT and XPS were used to construct the band structure and support the charge transfer at the interfaces to follow S-S strategy during OTC and SMX degradation under visible light. IEF, bend bending systematically modulated charge transfer, and the core-shell strategy restricted possible junctions’ formation to three to accord triple S-scheme heterojunction. This work demonstrated the construction of Triple S-scheme heterostructures as a promising strategy for efficient charge separation making it a suitable candidate for elimination of pollutants.</p></div>\",\"PeriodicalId\":7220,\"journal\":{\"name\":\"Advanced Composites and Hybrid Materials\",\"volume\":\"7 5\",\"pages\":\"\"},\"PeriodicalIF\":23.2000,\"publicationDate\":\"2024-10-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s42114-024-01014-1.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Composites and Hybrid Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s42114-024-01014-1\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, COMPOSITES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Composites and Hybrid Materials","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s42114-024-01014-1","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 0

摘要

随着 S 型和双 S 型异质结的建立,对两个或更多半导体异质结中异质界面的形成和电荷转移动力学的研究和了解日益增多。然而,对四组份系统中可能的界面电荷转移及其类型的研究还很有限。本文使用 LaNiO3、BiOBr、CuBi2O4 和 Bi2WO6 研究了一种四组份异质结,以推测和证明四重和三重 S 型异质结之间的偏差。利用 DFT 和 XPS 构建了带状结构,并支持在可见光下 OTC 和 SMX 降解过程中,界面上的电荷转移遵循 S-S 策略。IEF、弯曲系统地调节了电荷转移,核壳策略将可能形成的结限制为三个,从而形成了三S型异质结。这项研究表明,构建三重 S 型异质结构是一种很有前途的高效电荷分离策略,是消除污染物的理想选择。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Triple S-scheme BiOBr@LaNiO3/CuBi2O4/Bi2WO6 heterojunction with plasmonic Bi-induced stability: deviation from quadruple S-scheme and mechanistic investigation

The investigation and understanding of heterointerfaces formation and charge transfer dynamics in two or more semiconductor heterojunctions increased ensuing establishment of S-scheme and dual S-scheme heterojunctions. However, investigations of possible charge transfer at interfaces and their type in four component systems are limited. Herein, a four-component heterojunction was investigated to postulate and demonstrate deviation between quadruple and triple S-scheme heterojunctions possibilities using LaNiO3, BiOBr, CuBi2O4, and Bi2WO6. DFT and XPS were used to construct the band structure and support the charge transfer at the interfaces to follow S-S strategy during OTC and SMX degradation under visible light. IEF, bend bending systematically modulated charge transfer, and the core-shell strategy restricted possible junctions’ formation to three to accord triple S-scheme heterojunction. This work demonstrated the construction of Triple S-scheme heterostructures as a promising strategy for efficient charge separation making it a suitable candidate for elimination of pollutants.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
26.00
自引率
21.40%
发文量
185
期刊介绍: Advanced Composites and Hybrid Materials is a leading international journal that promotes interdisciplinary collaboration among materials scientists, engineers, chemists, biologists, and physicists working on composites, including nanocomposites. Our aim is to facilitate rapid scientific communication in this field. The journal publishes high-quality research on various aspects of composite materials, including materials design, surface and interface science/engineering, manufacturing, structure control, property design, device fabrication, and other applications. We also welcome simulation and modeling studies that are relevant to composites. Additionally, papers focusing on the relationship between fillers and the matrix are of particular interest. Our scope includes polymer, metal, and ceramic matrices, with a special emphasis on reviews and meta-analyses related to materials selection. We cover a wide range of topics, including transport properties, strategies for controlling interfaces and composition distribution, bottom-up assembly of nanocomposites, highly porous and high-density composites, electronic structure design, materials synergisms, and thermoelectric materials. Advanced Composites and Hybrid Materials follows a rigorous single-blind peer-review process to ensure the quality and integrity of the published work.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信