{"title":"利用微波途径高效、简便、快速合成纳米级 Mn3O4","authors":"Akash Yadav, Ratnesh Jha, Akash Bhatkar, Aditi Kamble, Vishal Vaishnav, Shivamurthy P. Bogalera, Marimuthu Manikandan, Girish Praveen Nayaka, Shubhangi Umbarkar, Thirumalaiswamy Raja, Kushal D. Bhatte","doi":"10.1007/s11051-024-06148-3","DOIUrl":null,"url":null,"abstract":"<div><p>Microwave-assisted one-pot, one-step, calcination-free synthesis of nanosized Mn<sub>3</sub>O<sub>4</sub> is reported using only benzylamine and manganese acetate. Benzylamine in this protocol plays a vital role for efficient microwave synthesis. This microwave method enables the synthesis of nanosized Mn<sub>3</sub>O<sub>4</sub> in just few hours only in a single step eliminating the need of calcinations of any intermediate. The synthesized nanosized Mn<sub>3</sub>O<sub>4</sub> was analyzed by XRD, HRTEM, EDAX, and Raman spectroscopy. The catalytic and electrochemical properties of as-synthesized Mn<sub>3</sub>O<sub>4</sub> were investigated. In galvanostatic charge–discharge experiments, after 800 cycles, more than 89% capacitance was retained for electrodes made by as synthesized Mn<sub>3</sub>O<sub>4</sub> nanomaterials indicating its very good stability. In the catalytic conversion of cinnamyl alcohol to cinnamaldehyde via oxidation, using as prepared nanosized Mn<sub>3</sub>O<sub>4</sub> as a catalyst, it displays effective catalytic properties. A probable mechanical study of its formation was also envisaged. This synthesis protocol is additive-free, occurs in a short time, is facile, is energy efficient, and eliminates the use of many chemicals. These silent features make these reported protocols economically viable and environmentally benign which adhere to the principles of Green Chemistry.</p></div>","PeriodicalId":653,"journal":{"name":"Journal of Nanoparticle Research","volume":"26 10","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An effective, facile, and rapid synthesis of nanosized Mn3O4 using a microwave route\",\"authors\":\"Akash Yadav, Ratnesh Jha, Akash Bhatkar, Aditi Kamble, Vishal Vaishnav, Shivamurthy P. Bogalera, Marimuthu Manikandan, Girish Praveen Nayaka, Shubhangi Umbarkar, Thirumalaiswamy Raja, Kushal D. Bhatte\",\"doi\":\"10.1007/s11051-024-06148-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Microwave-assisted one-pot, one-step, calcination-free synthesis of nanosized Mn<sub>3</sub>O<sub>4</sub> is reported using only benzylamine and manganese acetate. Benzylamine in this protocol plays a vital role for efficient microwave synthesis. This microwave method enables the synthesis of nanosized Mn<sub>3</sub>O<sub>4</sub> in just few hours only in a single step eliminating the need of calcinations of any intermediate. The synthesized nanosized Mn<sub>3</sub>O<sub>4</sub> was analyzed by XRD, HRTEM, EDAX, and Raman spectroscopy. The catalytic and electrochemical properties of as-synthesized Mn<sub>3</sub>O<sub>4</sub> were investigated. In galvanostatic charge–discharge experiments, after 800 cycles, more than 89% capacitance was retained for electrodes made by as synthesized Mn<sub>3</sub>O<sub>4</sub> nanomaterials indicating its very good stability. In the catalytic conversion of cinnamyl alcohol to cinnamaldehyde via oxidation, using as prepared nanosized Mn<sub>3</sub>O<sub>4</sub> as a catalyst, it displays effective catalytic properties. A probable mechanical study of its formation was also envisaged. This synthesis protocol is additive-free, occurs in a short time, is facile, is energy efficient, and eliminates the use of many chemicals. These silent features make these reported protocols economically viable and environmentally benign which adhere to the principles of Green Chemistry.</p></div>\",\"PeriodicalId\":653,\"journal\":{\"name\":\"Journal of Nanoparticle Research\",\"volume\":\"26 10\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Nanoparticle Research\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11051-024-06148-3\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nanoparticle Research","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s11051-024-06148-3","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
An effective, facile, and rapid synthesis of nanosized Mn3O4 using a microwave route
Microwave-assisted one-pot, one-step, calcination-free synthesis of nanosized Mn3O4 is reported using only benzylamine and manganese acetate. Benzylamine in this protocol plays a vital role for efficient microwave synthesis. This microwave method enables the synthesis of nanosized Mn3O4 in just few hours only in a single step eliminating the need of calcinations of any intermediate. The synthesized nanosized Mn3O4 was analyzed by XRD, HRTEM, EDAX, and Raman spectroscopy. The catalytic and electrochemical properties of as-synthesized Mn3O4 were investigated. In galvanostatic charge–discharge experiments, after 800 cycles, more than 89% capacitance was retained for electrodes made by as synthesized Mn3O4 nanomaterials indicating its very good stability. In the catalytic conversion of cinnamyl alcohol to cinnamaldehyde via oxidation, using as prepared nanosized Mn3O4 as a catalyst, it displays effective catalytic properties. A probable mechanical study of its formation was also envisaged. This synthesis protocol is additive-free, occurs in a short time, is facile, is energy efficient, and eliminates the use of many chemicals. These silent features make these reported protocols economically viable and environmentally benign which adhere to the principles of Green Chemistry.
期刊介绍:
The objective of the Journal of Nanoparticle Research is to disseminate knowledge of the physical, chemical and biological phenomena and processes in structures that have at least one lengthscale ranging from molecular to approximately 100 nm (or submicron in some situations), and exhibit improved and novel properties that are a direct result of their small size.
Nanoparticle research is a key component of nanoscience, nanoengineering and nanotechnology.
The focus of the Journal is on the specific concepts, properties, phenomena, and processes related to particles, tubes, layers, macromolecules, clusters and other finite structures of the nanoscale size range. Synthesis, assembly, transport, reactivity, and stability of such structures are considered. Development of in-situ and ex-situ instrumentation for characterization of nanoparticles and their interfaces should be based on new principles for probing properties and phenomena not well understood at the nanometer scale. Modeling and simulation may include atom-based quantum mechanics; molecular dynamics; single-particle, multi-body and continuum based models; fractals; other methods suitable for modeling particle synthesis, assembling and interaction processes. Realization and application of systems, structures and devices with novel functions obtained via precursor nanoparticles is emphasized. Approaches may include gas-, liquid-, solid-, and vacuum-based processes, size reduction, chemical- and bio-self assembly. Contributions include utilization of nanoparticle systems for enhancing a phenomenon or process and particle assembling into hierarchical structures, as well as formulation and the administration of drugs. Synergistic approaches originating from different disciplines and technologies, and interaction between the research providers and users in this field, are encouraged.