设计多功能 Nb2O5 棒与 ZnO 改性 g-C3N4 混合材料,用于储能和氢气进化

IF 2.5 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY
Aromal M. Vijay, T. Kavinkumar, S. Gobalakrishnan, N. Chidhambaram, Perumal Asaithambi, R. Srinivasan, Arun Thirumurugan
{"title":"设计多功能 Nb2O5 棒与 ZnO 改性 g-C3N4 混合材料,用于储能和氢气进化","authors":"Aromal M. Vijay,&nbsp;T. Kavinkumar,&nbsp;S. Gobalakrishnan,&nbsp;N. Chidhambaram,&nbsp;Perumal Asaithambi,&nbsp;R. Srinivasan,&nbsp;Arun Thirumurugan","doi":"10.1007/s00339-024-07955-0","DOIUrl":null,"url":null,"abstract":"<div><p>The design of multifunctional materials for energy storage and conversion systems is vital in addressing present global energy issues. In this work, we have prepared a highly active and economical hybrid material comprising ZnO and Nb<sub>2</sub>O<sub>5</sub>, integrated with g-C<sub>3</sub>N<sub>4</sub> (Nb@ZGCN) through the simple chemical method followed by calcination process. The resultant Nb@ZGCN electrode delivered a specific capacitance of 122.3 F g<sup>−1</sup> at a current density of 1 A g<sup>−1</sup> and maintained 71% of its initial value at a current density of 4 A g<sup>−1</sup> in a 6 M KOH electrolyte. This hybrid electrode exhibited superb cyclic stability of 105% even after 2000 cycles at 4 A g<sup>−1</sup> with an increased coulomb efficiency than the first cycle which is close to 100%. Additionally, the prepared hybrid material was further applied for electrocatalytic hydrogen evolution reaction (HER), delivering a small overpotential of 252.1 mV to achieve a current rate of 10 mA cm<sup>− 2</sup> along with long-term durability in a 1 M KOH medium. The synergistic interaction between the ZnO, Nb<sub>2</sub>O<sub>5</sub> and graphitic carbon nitride in the hybrid structure leads to abundant electroactive sites that remarkably improve the supercapacitive and HER activities. These results suggest that the developed hybrid material can be further exploited as an electrode material for supercapacitor and water splitting applications.</p></div>","PeriodicalId":473,"journal":{"name":"Applied Physics A","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00339-024-07955-0.pdf","citationCount":"0","resultStr":"{\"title\":\"Designing multifunctional Nb2O5 rods with ZnO modified g-C3N4 hybrid material for energy storage and hydrogen evolution\",\"authors\":\"Aromal M. Vijay,&nbsp;T. Kavinkumar,&nbsp;S. Gobalakrishnan,&nbsp;N. Chidhambaram,&nbsp;Perumal Asaithambi,&nbsp;R. Srinivasan,&nbsp;Arun Thirumurugan\",\"doi\":\"10.1007/s00339-024-07955-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The design of multifunctional materials for energy storage and conversion systems is vital in addressing present global energy issues. In this work, we have prepared a highly active and economical hybrid material comprising ZnO and Nb<sub>2</sub>O<sub>5</sub>, integrated with g-C<sub>3</sub>N<sub>4</sub> (Nb@ZGCN) through the simple chemical method followed by calcination process. The resultant Nb@ZGCN electrode delivered a specific capacitance of 122.3 F g<sup>−1</sup> at a current density of 1 A g<sup>−1</sup> and maintained 71% of its initial value at a current density of 4 A g<sup>−1</sup> in a 6 M KOH electrolyte. This hybrid electrode exhibited superb cyclic stability of 105% even after 2000 cycles at 4 A g<sup>−1</sup> with an increased coulomb efficiency than the first cycle which is close to 100%. Additionally, the prepared hybrid material was further applied for electrocatalytic hydrogen evolution reaction (HER), delivering a small overpotential of 252.1 mV to achieve a current rate of 10 mA cm<sup>− 2</sup> along with long-term durability in a 1 M KOH medium. The synergistic interaction between the ZnO, Nb<sub>2</sub>O<sub>5</sub> and graphitic carbon nitride in the hybrid structure leads to abundant electroactive sites that remarkably improve the supercapacitive and HER activities. These results suggest that the developed hybrid material can be further exploited as an electrode material for supercapacitor and water splitting applications.</p></div>\",\"PeriodicalId\":473,\"journal\":{\"name\":\"Applied Physics A\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s00339-024-07955-0.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Physics A\",\"FirstCategoryId\":\"4\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00339-024-07955-0\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Physics A","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1007/s00339-024-07955-0","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

设计用于能量存储和转换系统的多功能材料对于解决当前的全球能源问题至关重要。在这项工作中,我们通过简单的化学方法和煅烧过程,制备了一种由氧化锌和氧化铌组成的高活性、经济型混合材料,并将其与 g-C3N4 集成在一起(Nb@ZGCN)。在 6 M KOH 电解液中,当电流密度为 1 A g-1 时,Nb@ZGCN 电极的比电容为 122.3 F g-1;当电流密度为 4 A g-1 时,比电容保持在初始值的 71%。即使在 4 A g-1 的条件下循环 2000 次,这种混合电极的循环稳定性也高达 105%,库仑效率也比第一次循环提高了,接近 100%。此外,制备的混合材料还被进一步应用于电催化氢进化反应(HER),在 1 M KOH 介质中提供 252.1 mV 的小过电位,实现 10 mA cm- 2 的电流速率和长期耐久性。混合结构中的氧化锌、氧化铌和氮化石墨碳之间的协同作用产生了丰富的电活性位点,显著提高了超级电容器和氢氧化还原活性。这些结果表明,所开发的混合材料可进一步用作超级电容器和水分离应用的电极材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Designing multifunctional Nb2O5 rods with ZnO modified g-C3N4 hybrid material for energy storage and hydrogen evolution

The design of multifunctional materials for energy storage and conversion systems is vital in addressing present global energy issues. In this work, we have prepared a highly active and economical hybrid material comprising ZnO and Nb2O5, integrated with g-C3N4 (Nb@ZGCN) through the simple chemical method followed by calcination process. The resultant Nb@ZGCN electrode delivered a specific capacitance of 122.3 F g−1 at a current density of 1 A g−1 and maintained 71% of its initial value at a current density of 4 A g−1 in a 6 M KOH electrolyte. This hybrid electrode exhibited superb cyclic stability of 105% even after 2000 cycles at 4 A g−1 with an increased coulomb efficiency than the first cycle which is close to 100%. Additionally, the prepared hybrid material was further applied for electrocatalytic hydrogen evolution reaction (HER), delivering a small overpotential of 252.1 mV to achieve a current rate of 10 mA cm− 2 along with long-term durability in a 1 M KOH medium. The synergistic interaction between the ZnO, Nb2O5 and graphitic carbon nitride in the hybrid structure leads to abundant electroactive sites that remarkably improve the supercapacitive and HER activities. These results suggest that the developed hybrid material can be further exploited as an electrode material for supercapacitor and water splitting applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Physics A
Applied Physics A 工程技术-材料科学:综合
CiteScore
4.80
自引率
7.40%
发文量
964
审稿时长
38 days
期刊介绍: Applied Physics A publishes experimental and theoretical investigations in applied physics as regular articles, rapid communications, and invited papers. The distinguished 30-member Board of Editors reflects the interdisciplinary approach of the journal and ensures the highest quality of peer review.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信