{"title":"具有可调脉冲链序列和间隔的脉冲串模式 Nd:YAG/Cr⁴⁺:YAG 激光器","authors":"Nihui Zhang;Di Xin;Zhenjiao Shan;Fengxin Dong;Xuyan Zhou;Hongbo Zhang;Wanhua Zheng","doi":"10.1109/JQE.2024.3468999","DOIUrl":null,"url":null,"abstract":"We employed 808 nm and 885 nm pumping sources for time-shared pumping of the compact Nd:YAG/Cr4+:YAG passively Q-switched laser by incorporating time and sequence modulation functions into the electrical modulation signals. Through adjusting the pumping peak powers and pulse widths of the two pump sources, various burst-mode lasers were realized. The repetition frequency and time intervals between pulse chain sequences, as well as the intervals between sub-pulses within a sequence, could be adjustable, addressing the challenge of precise timing control in burst-mode lasers. The time-shared pumping Q-switched laser displayed significantly better controllable pulse characteristic compared to the conventional single-pulse output mode of burst-mode lasers. In conclusion, this work has effectively expanded the application scope of burst-mode lasers, representing a novel contribution to the field.","PeriodicalId":13200,"journal":{"name":"IEEE Journal of Quantum Electronics","volume":"60 6","pages":"1-7"},"PeriodicalIF":2.2000,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Burst-Mode Nd: YAG/Cr⁴⁺:YAG Laser With Tunable Pulse Chain Sequence and Intervals\",\"authors\":\"Nihui Zhang;Di Xin;Zhenjiao Shan;Fengxin Dong;Xuyan Zhou;Hongbo Zhang;Wanhua Zheng\",\"doi\":\"10.1109/JQE.2024.3468999\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We employed 808 nm and 885 nm pumping sources for time-shared pumping of the compact Nd:YAG/Cr4+:YAG passively Q-switched laser by incorporating time and sequence modulation functions into the electrical modulation signals. Through adjusting the pumping peak powers and pulse widths of the two pump sources, various burst-mode lasers were realized. The repetition frequency and time intervals between pulse chain sequences, as well as the intervals between sub-pulses within a sequence, could be adjustable, addressing the challenge of precise timing control in burst-mode lasers. The time-shared pumping Q-switched laser displayed significantly better controllable pulse characteristic compared to the conventional single-pulse output mode of burst-mode lasers. In conclusion, this work has effectively expanded the application scope of burst-mode lasers, representing a novel contribution to the field.\",\"PeriodicalId\":13200,\"journal\":{\"name\":\"IEEE Journal of Quantum Electronics\",\"volume\":\"60 6\",\"pages\":\"1-7\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Journal of Quantum Electronics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10695101/\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Quantum Electronics","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10695101/","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Burst-Mode Nd: YAG/Cr⁴⁺:YAG Laser With Tunable Pulse Chain Sequence and Intervals
We employed 808 nm and 885 nm pumping sources for time-shared pumping of the compact Nd:YAG/Cr4+:YAG passively Q-switched laser by incorporating time and sequence modulation functions into the electrical modulation signals. Through adjusting the pumping peak powers and pulse widths of the two pump sources, various burst-mode lasers were realized. The repetition frequency and time intervals between pulse chain sequences, as well as the intervals between sub-pulses within a sequence, could be adjustable, addressing the challenge of precise timing control in burst-mode lasers. The time-shared pumping Q-switched laser displayed significantly better controllable pulse characteristic compared to the conventional single-pulse output mode of burst-mode lasers. In conclusion, this work has effectively expanded the application scope of burst-mode lasers, representing a novel contribution to the field.
期刊介绍:
The IEEE Journal of Quantum Electronics is dedicated to the publication of manuscripts reporting novel experimental or theoretical results in the broad field of the science and technology of quantum electronics. The Journal comprises original contributions, both regular papers and letters, describing significant advances in the understanding of quantum electronics phenomena or the demonstration of new devices, systems, or applications. Manuscripts reporting new developments in systems and applications must emphasize quantum electronics principles or devices. The scope of JQE encompasses the generation, propagation, detection, and application of coherent electromagnetic radiation having wavelengths below one millimeter (i.e., in the submillimeter, infrared, visible, ultraviolet, etc., regions). Whether the focus of a manuscript is a quantum-electronic device or phenomenon, the critical factor in the editorial review of a manuscript is the potential impact of the results presented on continuing research in the field or on advancing the technological base of quantum electronics.