复杂几何形状中的小颗粒的高效耦合晶格玻尔兹曼和离散元素法模拟

IF 2.9 2区 数学 Q1 MATHEMATICS, APPLIED
Tristan G. Vlogman, Kartik Jain
{"title":"复杂几何形状中的小颗粒的高效耦合晶格玻尔兹曼和离散元素法模拟","authors":"Tristan G. Vlogman,&nbsp;Kartik Jain","doi":"10.1016/j.camwa.2024.10.004","DOIUrl":null,"url":null,"abstract":"<div><div>Many interesting particulate flow problems can only be studied using efficient numerical methods. We present a method based on a lattice Boltzmann fluid coupled to unresolved particles that interact with each other via the Discrete Element Method. Our method improves upon existing numerical schemes through the addition of a novel subcycling algorithm that guarantees momentum conservation during each DEM substep. The intended application is studying transport of solid particles in physiologic processes, although the method is generally applicable. We present in detail the development and (parallel) implementation of the model and show how intricacies of the coupling scheme must be considered to avoid unphysical behavior and instabilities. The scalability of the code is tested on two modern supercomputers. We demonstrate the method's applicability to biomedical applications by simulating the injection and distribution of particles in an idealized liver vasculature.</div></div>","PeriodicalId":55218,"journal":{"name":"Computers & Mathematics with Applications","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Efficient coupled lattice Boltzmann and Discrete Element Method simulations of small particles in complex geometries\",\"authors\":\"Tristan G. Vlogman,&nbsp;Kartik Jain\",\"doi\":\"10.1016/j.camwa.2024.10.004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Many interesting particulate flow problems can only be studied using efficient numerical methods. We present a method based on a lattice Boltzmann fluid coupled to unresolved particles that interact with each other via the Discrete Element Method. Our method improves upon existing numerical schemes through the addition of a novel subcycling algorithm that guarantees momentum conservation during each DEM substep. The intended application is studying transport of solid particles in physiologic processes, although the method is generally applicable. We present in detail the development and (parallel) implementation of the model and show how intricacies of the coupling scheme must be considered to avoid unphysical behavior and instabilities. The scalability of the code is tested on two modern supercomputers. We demonstrate the method's applicability to biomedical applications by simulating the injection and distribution of particles in an idealized liver vasculature.</div></div>\",\"PeriodicalId\":55218,\"journal\":{\"name\":\"Computers & Mathematics with Applications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-10-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers & Mathematics with Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0898122124004474\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Mathematics with Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0898122124004474","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

许多有趣的粒子流问题只能通过高效的数值方法进行研究。我们提出了一种基于晶格玻尔兹曼流体的方法,该流体与未解决的颗粒通过离散元素法相互作用。我们的方法改进了现有的数值方案,增加了新颖的子循环算法,保证了每个 DEM 子步骤中的动量守恒。该方法的预期应用是研究生理过程中固体颗粒的传输,尽管该方法普遍适用。我们详细介绍了该模型的开发和(并行)实施,并展示了必须如何考虑耦合方案的复杂性,以避免非物理行为和不稳定性。代码的可扩展性在两台现代超级计算机上进行了测试。我们通过模拟粒子在理想化肝脏血管中的注入和分布,展示了该方法在生物医学应用中的适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Efficient coupled lattice Boltzmann and Discrete Element Method simulations of small particles in complex geometries

Efficient coupled lattice Boltzmann and Discrete Element Method simulations of small particles in complex geometries
Many interesting particulate flow problems can only be studied using efficient numerical methods. We present a method based on a lattice Boltzmann fluid coupled to unresolved particles that interact with each other via the Discrete Element Method. Our method improves upon existing numerical schemes through the addition of a novel subcycling algorithm that guarantees momentum conservation during each DEM substep. The intended application is studying transport of solid particles in physiologic processes, although the method is generally applicable. We present in detail the development and (parallel) implementation of the model and show how intricacies of the coupling scheme must be considered to avoid unphysical behavior and instabilities. The scalability of the code is tested on two modern supercomputers. We demonstrate the method's applicability to biomedical applications by simulating the injection and distribution of particles in an idealized liver vasculature.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computers & Mathematics with Applications
Computers & Mathematics with Applications 工程技术-计算机:跨学科应用
CiteScore
5.10
自引率
10.30%
发文量
396
审稿时长
9.9 weeks
期刊介绍: Computers & Mathematics with Applications provides a medium of exchange for those engaged in fields contributing to building successful simulations for science and engineering using Partial Differential Equations (PDEs).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信