针对时间分数艾伦-卡恩方程的具有可变时间步长的无条件能量稳定 ESAV-VEM 方案

IF 2.9 2区 数学 Q1 MATHEMATICS, APPLIED
Yanping Chen , Qiling Gu , Jian Huang
{"title":"针对时间分数艾伦-卡恩方程的具有可变时间步长的无条件能量稳定 ESAV-VEM 方案","authors":"Yanping Chen ,&nbsp;Qiling Gu ,&nbsp;Jian Huang","doi":"10.1016/j.camwa.2024.10.002","DOIUrl":null,"url":null,"abstract":"<div><div>For the time fractional Allen-Cahn equation, integration of the exponential scalar auxiliary variable (ESAV) time discretization with the virtual element method (VEM) spatial discretization leads to ESAV-VEM schemes on polygonal meshes. The resulting ESAV-VEM algorithms are linear and effective for the completely decoupled computations of the phase variable <em>u</em> and the auxiliary variable <em>r</em>. Based on the positive definiteness of variable-step discrete convolution kernels relevant to L1 and L1-CN time discretizations, the corresponding unconditionally energy boundedness results are proven on arbitrary nonuniform time meshes. By means of the discrete gradient structure of the temporal discretization operator, the discrete energy dissipation laws are developed via a unified framework. Moreover, the discrete energy decay nature coincides with the classical analogies as the fractional order tends to one. Finally, a series of numerical experiments are presented to verify the accuracy and efficiency of the proposed method.</div></div>","PeriodicalId":55218,"journal":{"name":"Computers & Mathematics with Applications","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unconditionally energy stable ESAV-VEM schemes with variable time steps for the time fractional Allen-Cahn equation\",\"authors\":\"Yanping Chen ,&nbsp;Qiling Gu ,&nbsp;Jian Huang\",\"doi\":\"10.1016/j.camwa.2024.10.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>For the time fractional Allen-Cahn equation, integration of the exponential scalar auxiliary variable (ESAV) time discretization with the virtual element method (VEM) spatial discretization leads to ESAV-VEM schemes on polygonal meshes. The resulting ESAV-VEM algorithms are linear and effective for the completely decoupled computations of the phase variable <em>u</em> and the auxiliary variable <em>r</em>. Based on the positive definiteness of variable-step discrete convolution kernels relevant to L1 and L1-CN time discretizations, the corresponding unconditionally energy boundedness results are proven on arbitrary nonuniform time meshes. By means of the discrete gradient structure of the temporal discretization operator, the discrete energy dissipation laws are developed via a unified framework. Moreover, the discrete energy decay nature coincides with the classical analogies as the fractional order tends to one. Finally, a series of numerical experiments are presented to verify the accuracy and efficiency of the proposed method.</div></div>\",\"PeriodicalId\":55218,\"journal\":{\"name\":\"Computers & Mathematics with Applications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-10-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers & Mathematics with Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0898122124004450\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Mathematics with Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0898122124004450","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

对于时间分数 Allen-Cahn 方程,指数标量辅助变量(ESAV)时间离散化与虚拟元素法(VEM)空间离散化的整合导致了多边形网格上的 ESAV-VEM 方案。基于与 L1 和 L1-CN 时间离散化相关的变步离散卷积核的正定性,在任意非均匀时间网格上证明了相应的无条件能量有界性结果。通过时间离散化算子的离散梯度结构,离散能量耗散规律通过一个统一的框架得到了发展。此外,当分数阶数趋向于 1 时,离散能量衰减性质与经典类比相吻合。最后,通过一系列数值实验验证了所提方法的精度和效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Unconditionally energy stable ESAV-VEM schemes with variable time steps for the time fractional Allen-Cahn equation
For the time fractional Allen-Cahn equation, integration of the exponential scalar auxiliary variable (ESAV) time discretization with the virtual element method (VEM) spatial discretization leads to ESAV-VEM schemes on polygonal meshes. The resulting ESAV-VEM algorithms are linear and effective for the completely decoupled computations of the phase variable u and the auxiliary variable r. Based on the positive definiteness of variable-step discrete convolution kernels relevant to L1 and L1-CN time discretizations, the corresponding unconditionally energy boundedness results are proven on arbitrary nonuniform time meshes. By means of the discrete gradient structure of the temporal discretization operator, the discrete energy dissipation laws are developed via a unified framework. Moreover, the discrete energy decay nature coincides with the classical analogies as the fractional order tends to one. Finally, a series of numerical experiments are presented to verify the accuracy and efficiency of the proposed method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computers & Mathematics with Applications
Computers & Mathematics with Applications 工程技术-计算机:跨学科应用
CiteScore
5.10
自引率
10.30%
发文量
396
审稿时长
9.9 weeks
期刊介绍: Computers & Mathematics with Applications provides a medium of exchange for those engaged in fields contributing to building successful simulations for science and engineering using Partial Differential Equations (PDEs).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信