面向模型不匹配和不确定性的自动驾驶汽车路径跟踪实时模型预测控制

IF 5.4 2区 计算机科学 Q1 AUTOMATION & CONTROL SYSTEMS
Wenqiang Zhao , Hongqian Wei , Qiang Ai , Nan Zheng , Chen Lin , Youtong Zhang
{"title":"面向模型不匹配和不确定性的自动驾驶汽车路径跟踪实时模型预测控制","authors":"Wenqiang Zhao ,&nbsp;Hongqian Wei ,&nbsp;Qiang Ai ,&nbsp;Nan Zheng ,&nbsp;Chen Lin ,&nbsp;Youtong Zhang","doi":"10.1016/j.conengprac.2024.106126","DOIUrl":null,"url":null,"abstract":"<div><div>The path following function is a critical component of functional safety for autonomous vehicles, and following precision has garnered increased attention in practical applications. However, control performance can be compromised due to uncertainties in vehicle parameters and discrepancies between the control model and the actual vehicle to be controlled. To address this, a real-time model predictive control for path following of autonomous vehicles is proposed, incorporating an estimation of model mismatch. An adaptive extended Kalman filter is developed to estimate the potential model mismatch terms, and state deviations are compensated accordingly. Subsequently, a parameter-varying model predictive controller is formulated to achieve unbiased path-following control while maintaining robustness to parameter variations. Simulation results demonstrate a significant improvement in lateral following accuracy, with enhancements of 53.85%, 47.83%, and 42.86% compared to the nonlinear model predictive control, robust model predictive control, and learning-based control, respectively. The hardware-in-the-loop and real-road experiments further validate the excellent real-time executability, with a maximum time cost of 12.4 ms, accounting for 62% of the sampling period.</div></div>","PeriodicalId":50615,"journal":{"name":"Control Engineering Practice","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Real-time model predictive control of path-following for autonomous vehicles towards model mismatch and uncertainty\",\"authors\":\"Wenqiang Zhao ,&nbsp;Hongqian Wei ,&nbsp;Qiang Ai ,&nbsp;Nan Zheng ,&nbsp;Chen Lin ,&nbsp;Youtong Zhang\",\"doi\":\"10.1016/j.conengprac.2024.106126\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The path following function is a critical component of functional safety for autonomous vehicles, and following precision has garnered increased attention in practical applications. However, control performance can be compromised due to uncertainties in vehicle parameters and discrepancies between the control model and the actual vehicle to be controlled. To address this, a real-time model predictive control for path following of autonomous vehicles is proposed, incorporating an estimation of model mismatch. An adaptive extended Kalman filter is developed to estimate the potential model mismatch terms, and state deviations are compensated accordingly. Subsequently, a parameter-varying model predictive controller is formulated to achieve unbiased path-following control while maintaining robustness to parameter variations. Simulation results demonstrate a significant improvement in lateral following accuracy, with enhancements of 53.85%, 47.83%, and 42.86% compared to the nonlinear model predictive control, robust model predictive control, and learning-based control, respectively. The hardware-in-the-loop and real-road experiments further validate the excellent real-time executability, with a maximum time cost of 12.4 ms, accounting for 62% of the sampling period.</div></div>\",\"PeriodicalId\":50615,\"journal\":{\"name\":\"Control Engineering Practice\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Control Engineering Practice\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0967066124002855\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Control Engineering Practice","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0967066124002855","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

路径跟踪功能是自动驾驶车辆功能安全的重要组成部分,在实际应用中,跟踪精度越来越受到关注。然而,由于车辆参数的不确定性以及控制模型与实际受控车辆之间的差异,控制性能可能会受到影响。为解决这一问题,我们提出了一种用于自动驾驶车辆路径跟随的实时模型预测控制,其中包含对模型不匹配的估计。开发了一种自适应扩展卡尔曼滤波器来估计潜在的模型失配项,并对状态偏差进行相应补偿。随后,制定了参数变化模型预测控制器,以实现无偏的路径跟踪控制,同时保持对参数变化的鲁棒性。仿真结果表明,与非线性模型预测控制、鲁棒性模型预测控制和基于学习的控制相比,横向跟随精度有了显著提高,分别提高了 53.85%、47.83% 和 42.86%。硬件在环和实际道路实验进一步验证了其出色的实时可执行性,最大时间成本为 12.4 毫秒,占采样周期的 62%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Real-time model predictive control of path-following for autonomous vehicles towards model mismatch and uncertainty
The path following function is a critical component of functional safety for autonomous vehicles, and following precision has garnered increased attention in practical applications. However, control performance can be compromised due to uncertainties in vehicle parameters and discrepancies between the control model and the actual vehicle to be controlled. To address this, a real-time model predictive control for path following of autonomous vehicles is proposed, incorporating an estimation of model mismatch. An adaptive extended Kalman filter is developed to estimate the potential model mismatch terms, and state deviations are compensated accordingly. Subsequently, a parameter-varying model predictive controller is formulated to achieve unbiased path-following control while maintaining robustness to parameter variations. Simulation results demonstrate a significant improvement in lateral following accuracy, with enhancements of 53.85%, 47.83%, and 42.86% compared to the nonlinear model predictive control, robust model predictive control, and learning-based control, respectively. The hardware-in-the-loop and real-road experiments further validate the excellent real-time executability, with a maximum time cost of 12.4 ms, accounting for 62% of the sampling period.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Control Engineering Practice
Control Engineering Practice 工程技术-工程:电子与电气
CiteScore
9.20
自引率
12.20%
发文量
183
审稿时长
44 days
期刊介绍: Control Engineering Practice strives to meet the needs of industrial practitioners and industrially related academics and researchers. It publishes papers which illustrate the direct application of control theory and its supporting tools in all possible areas of automation. As a result, the journal only contains papers which can be considered to have made significant contributions to the application of advanced control techniques. It is normally expected that practical results should be included, but where simulation only studies are available, it is necessary to demonstrate that the simulation model is representative of a genuine application. Strictly theoretical papers will find a more appropriate home in Control Engineering Practice''s sister publication, Automatica. It is also expected that papers are innovative with respect to the state of the art and are sufficiently detailed for a reader to be able to duplicate the main results of the paper (supplementary material, including datasets, tables, code and any relevant interactive material can be made available and downloaded from the website). The benefits of the presented methods must be made very clear and the new techniques must be compared and contrasted with results obtained using existing methods. Moreover, a thorough analysis of failures that may happen in the design process and implementation can also be part of the paper. The scope of Control Engineering Practice matches the activities of IFAC. Papers demonstrating the contribution of automation and control in improving the performance, quality, productivity, sustainability, resource and energy efficiency, and the manageability of systems and processes for the benefit of mankind and are relevant to industrial practitioners are most welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信