{"title":"候选锰碲变磁体的安德烈耶夫反射","authors":"D.Yu. Kazmin, V.D. Esin, Yu.S. Barash, A.V. Timonina, N.N. Kolesnikov, E.V. Deviatov","doi":"10.1016/j.physb.2024.416602","DOIUrl":null,"url":null,"abstract":"<div><div>We experimentally study electron transport across a single planar junction between the indium electrode and MnTe altermagnet candidate. We confirm standard Ohmic behavior with strictly linear current–voltage curves above the indium critical field or temperature, although with high, about 100 kOhm, junction resistance. At low temperatures and in zero magnetic field, we observe a well-developed Andreev curve with the pronounced coherence peaks, which cannot be normally expected for these high values of normal junction resistance. The conclusion on the Andreev reflection is also supported by suppression in magnetic field, as well as by universality of the observed behavior for all of the investigated samples. The experimental results can be explained by specifics of Andreev transport through the disordered region at the superconductor-altermagnet interface. Due to a different set of restrictions on the possibility of Andreev reflection, an altermagnet suffers from the presence of disorder less than a normal spin-degenerate metal, so the conductance enhancement is retained throughout the superconducting gap.</div></div>","PeriodicalId":20116,"journal":{"name":"Physica B-condensed Matter","volume":"696 ","pages":"Article 416602"},"PeriodicalIF":2.8000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Andreev reflection for MnTe altermagnet candidate\",\"authors\":\"D.Yu. Kazmin, V.D. Esin, Yu.S. Barash, A.V. Timonina, N.N. Kolesnikov, E.V. Deviatov\",\"doi\":\"10.1016/j.physb.2024.416602\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We experimentally study electron transport across a single planar junction between the indium electrode and MnTe altermagnet candidate. We confirm standard Ohmic behavior with strictly linear current–voltage curves above the indium critical field or temperature, although with high, about 100 kOhm, junction resistance. At low temperatures and in zero magnetic field, we observe a well-developed Andreev curve with the pronounced coherence peaks, which cannot be normally expected for these high values of normal junction resistance. The conclusion on the Andreev reflection is also supported by suppression in magnetic field, as well as by universality of the observed behavior for all of the investigated samples. The experimental results can be explained by specifics of Andreev transport through the disordered region at the superconductor-altermagnet interface. Due to a different set of restrictions on the possibility of Andreev reflection, an altermagnet suffers from the presence of disorder less than a normal spin-degenerate metal, so the conductance enhancement is retained throughout the superconducting gap.</div></div>\",\"PeriodicalId\":20116,\"journal\":{\"name\":\"Physica B-condensed Matter\",\"volume\":\"696 \",\"pages\":\"Article 416602\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physica B-condensed Matter\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0921452624009438\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, CONDENSED MATTER\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica B-condensed Matter","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0921452624009438","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
We experimentally study electron transport across a single planar junction between the indium electrode and MnTe altermagnet candidate. We confirm standard Ohmic behavior with strictly linear current–voltage curves above the indium critical field or temperature, although with high, about 100 kOhm, junction resistance. At low temperatures and in zero magnetic field, we observe a well-developed Andreev curve with the pronounced coherence peaks, which cannot be normally expected for these high values of normal junction resistance. The conclusion on the Andreev reflection is also supported by suppression in magnetic field, as well as by universality of the observed behavior for all of the investigated samples. The experimental results can be explained by specifics of Andreev transport through the disordered region at the superconductor-altermagnet interface. Due to a different set of restrictions on the possibility of Andreev reflection, an altermagnet suffers from the presence of disorder less than a normal spin-degenerate metal, so the conductance enhancement is retained throughout the superconducting gap.
期刊介绍:
Physica B: Condensed Matter comprises all condensed matter and material physics that involve theoretical, computational and experimental work.
Papers should contain further developments and a proper discussion on the physics of experimental or theoretical results in one of the following areas:
-Magnetism
-Materials physics
-Nanostructures and nanomaterials
-Optics and optical materials
-Quantum materials
-Semiconductors
-Strongly correlated systems
-Superconductivity
-Surfaces and interfaces