回收废超级电容器中的活性碳,重新制造改进型超级电容器

IF 8.9 2区 工程技术 Q1 ENERGY & FUELS
{"title":"回收废超级电容器中的活性碳,重新制造改进型超级电容器","authors":"","doi":"10.1016/j.est.2024.114182","DOIUrl":null,"url":null,"abstract":"<div><div>The growing market of commercial electric double-layer capacitors (EDLCs) will lead to a vast accumulation of waste as they arrive out of operation. Recycling the spent electrode activated carbon is a closed-loop solution to provide environmental and economic advantages for EDLC use. However, effectively regenerated methods of high-purity activated carbons are still lacked despite their considerable expense. Herein, a simple steam physical activation method is developed to regenerate high-class activated carbons from spent EDLCs. The process is first demonstrated that can effectively eliminate few electrolytes and complex organics as well as regenerate electrode carbon materials. The activation-recycled carbon materials preserve the physicochemical properties of fresh activated carbons and enhance their mesopore ratios, which contributes to improved EDLC performance, obviously surpassing recycled carbon materials by calcination method, including superior specific capacitance of 103.3 F g<sup>−1</sup> at 0.5 A g<sup>−1</sup>, rate performance and cycling stability, equal to fresh activated carbons. Moreover, the assembled activation-recycled carbon material EDLC delivers low self-discharge rate (89 % of initial voltage after 72 h), wide temperature range (−40 to 85 °C), excellent cycling stability (92.2 % capacitance retention after 10,000 cycles) even at elevated voltages (3.0 V) and temperature (65 °C) test. The present work provides an effective and economic method of recycling high-grade activated carbons for sustainable EDLCs.</div></div>","PeriodicalId":15942,"journal":{"name":"Journal of energy storage","volume":null,"pages":null},"PeriodicalIF":8.9000,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Recycling of activated carbons from spent supercapacitors to refabricate improved supercapacitors\",\"authors\":\"\",\"doi\":\"10.1016/j.est.2024.114182\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The growing market of commercial electric double-layer capacitors (EDLCs) will lead to a vast accumulation of waste as they arrive out of operation. Recycling the spent electrode activated carbon is a closed-loop solution to provide environmental and economic advantages for EDLC use. However, effectively regenerated methods of high-purity activated carbons are still lacked despite their considerable expense. Herein, a simple steam physical activation method is developed to regenerate high-class activated carbons from spent EDLCs. The process is first demonstrated that can effectively eliminate few electrolytes and complex organics as well as regenerate electrode carbon materials. The activation-recycled carbon materials preserve the physicochemical properties of fresh activated carbons and enhance their mesopore ratios, which contributes to improved EDLC performance, obviously surpassing recycled carbon materials by calcination method, including superior specific capacitance of 103.3 F g<sup>−1</sup> at 0.5 A g<sup>−1</sup>, rate performance and cycling stability, equal to fresh activated carbons. Moreover, the assembled activation-recycled carbon material EDLC delivers low self-discharge rate (89 % of initial voltage after 72 h), wide temperature range (−40 to 85 °C), excellent cycling stability (92.2 % capacitance retention after 10,000 cycles) even at elevated voltages (3.0 V) and temperature (65 °C) test. The present work provides an effective and economic method of recycling high-grade activated carbons for sustainable EDLCs.</div></div>\",\"PeriodicalId\":15942,\"journal\":{\"name\":\"Journal of energy storage\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":8.9000,\"publicationDate\":\"2024-10-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of energy storage\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2352152X2403768X\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of energy storage","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352152X2403768X","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

随着商用双电层电容器(EDLC)市场的不断扩大,它们在停止使用后将产生大量的废弃物。回收利用废电极活性炭是一种闭环解决方案,可为双电层电容器的使用提供环境和经济优势。然而,尽管高纯度活性炭价格昂贵,但仍缺乏有效的再生方法。在此,我们开发了一种简单的蒸汽物理活化方法,用于从废旧乙二氯二苯醚中再生出高纯度活性炭。该工艺首次证明能有效去除少量电解质和复杂有机物,并能再生电极碳材料。活化再生碳材料保留了新鲜活性炭的物理化学特性,并提高了中孔比例,从而改善了 EDLC 的性能,明显优于煅烧法再生碳材料,包括在 0.5 A g-1 条件下 103.3 F g-1 的比电容、速率性能和循环稳定性,与新鲜活性炭相当。此外,组装后的活化再循环碳材料 EDLC 具有低自放电率(72 小时后为初始电压的 89%)、宽温度范围(-40 至 85 °C)、优异的循环稳定性(10,000 次循环后电容保持率为 92.2%),即使在电压升高(3.0 V)和温度升高(65 °C)的条件下也是如此。本研究为可持续发展的 EDLC 提供了一种有效、经济的高档活性碳回收方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Recycling of activated carbons from spent supercapacitors to refabricate improved supercapacitors
The growing market of commercial electric double-layer capacitors (EDLCs) will lead to a vast accumulation of waste as they arrive out of operation. Recycling the spent electrode activated carbon is a closed-loop solution to provide environmental and economic advantages for EDLC use. However, effectively regenerated methods of high-purity activated carbons are still lacked despite their considerable expense. Herein, a simple steam physical activation method is developed to regenerate high-class activated carbons from spent EDLCs. The process is first demonstrated that can effectively eliminate few electrolytes and complex organics as well as regenerate electrode carbon materials. The activation-recycled carbon materials preserve the physicochemical properties of fresh activated carbons and enhance their mesopore ratios, which contributes to improved EDLC performance, obviously surpassing recycled carbon materials by calcination method, including superior specific capacitance of 103.3 F g−1 at 0.5 A g−1, rate performance and cycling stability, equal to fresh activated carbons. Moreover, the assembled activation-recycled carbon material EDLC delivers low self-discharge rate (89 % of initial voltage after 72 h), wide temperature range (−40 to 85 °C), excellent cycling stability (92.2 % capacitance retention after 10,000 cycles) even at elevated voltages (3.0 V) and temperature (65 °C) test. The present work provides an effective and economic method of recycling high-grade activated carbons for sustainable EDLCs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of energy storage
Journal of energy storage Energy-Renewable Energy, Sustainability and the Environment
CiteScore
11.80
自引率
24.50%
发文量
2262
审稿时长
69 days
期刊介绍: Journal of energy storage focusses on all aspects of energy storage, in particular systems integration, electric grid integration, modelling and analysis, novel energy storage technologies, sizing and management strategies, business models for operation of storage systems and energy storage developments worldwide.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信