{"title":"实践中的原流变学:避免误读","authors":"","doi":"10.1016/j.cocis.2024.101866","DOIUrl":null,"url":null,"abstract":"<div><div>Protorheology is the paradigm that any observed flow or deformation is a chance to infer quantitative rheological properties. While this creates many opportunities for insight, there is significant risk of misunderstanding the physics involved, e.g. misinterpreting a liquid as a solid or mistaking viscous flow time as viscoelastic relaxation time. We describe these and other potential mistakes, use case studies to show how serious the problems can be, and contrast misinterpretations with correct approaches and interpretations. Some issues are especially important with materials involving colloidal particles and flows involving surface tension. Whether the reader is making inference from a tilted vial, time-lapse gravity-driven flow, a bounce test, die swell, or any other protorheology observation, the examples here serve as a guide for avoiding bad data in protorheology.</div></div>","PeriodicalId":293,"journal":{"name":"Current Opinion in Colloid & Interface Science","volume":null,"pages":null},"PeriodicalIF":7.9000,"publicationDate":"2024-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Protorheology in practice: Avoiding misinterpretation\",\"authors\":\"\",\"doi\":\"10.1016/j.cocis.2024.101866\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Protorheology is the paradigm that any observed flow or deformation is a chance to infer quantitative rheological properties. While this creates many opportunities for insight, there is significant risk of misunderstanding the physics involved, e.g. misinterpreting a liquid as a solid or mistaking viscous flow time as viscoelastic relaxation time. We describe these and other potential mistakes, use case studies to show how serious the problems can be, and contrast misinterpretations with correct approaches and interpretations. Some issues are especially important with materials involving colloidal particles and flows involving surface tension. Whether the reader is making inference from a tilted vial, time-lapse gravity-driven flow, a bounce test, die swell, or any other protorheology observation, the examples here serve as a guide for avoiding bad data in protorheology.</div></div>\",\"PeriodicalId\":293,\"journal\":{\"name\":\"Current Opinion in Colloid & Interface Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":7.9000,\"publicationDate\":\"2024-09-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Opinion in Colloid & Interface Science\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1359029424000840\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Colloid & Interface Science","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359029424000840","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Protorheology in practice: Avoiding misinterpretation
Protorheology is the paradigm that any observed flow or deformation is a chance to infer quantitative rheological properties. While this creates many opportunities for insight, there is significant risk of misunderstanding the physics involved, e.g. misinterpreting a liquid as a solid or mistaking viscous flow time as viscoelastic relaxation time. We describe these and other potential mistakes, use case studies to show how serious the problems can be, and contrast misinterpretations with correct approaches and interpretations. Some issues are especially important with materials involving colloidal particles and flows involving surface tension. Whether the reader is making inference from a tilted vial, time-lapse gravity-driven flow, a bounce test, die swell, or any other protorheology observation, the examples here serve as a guide for avoiding bad data in protorheology.
期刊介绍:
Current Opinion in Colloid and Interface Science (COCIS) is an international journal that focuses on the molecular and nanoscopic aspects of colloidal systems and interfaces in various scientific and technological fields. These include materials science, biologically-relevant systems, energy and environmental technologies, and industrial applications.
Unlike primary journals, COCIS primarily serves as a guide for researchers, helping them navigate through the vast landscape of recently published literature. It critically analyzes the state of the art, identifies bottlenecks and unsolved issues, and proposes future developments.
Moreover, COCIS emphasizes certain areas and papers that are considered particularly interesting and significant by the Editors and Section Editors. Its goal is to provide valuable insights and updates to the research community in these specialized areas.