超几何双和的创造性伸缩

IF 0.6 4区 数学 Q4 COMPUTER SCIENCE, THEORY & METHODS
Peter Paule , Carsten Schneider
{"title":"超几何双和的创造性伸缩","authors":"Peter Paule ,&nbsp;Carsten Schneider","doi":"10.1016/j.jsc.2024.102394","DOIUrl":null,"url":null,"abstract":"<div><div>We present efficient methods for calculating linear recurrences of hypergeometric double sums and, more generally, of multiple sums. In particular, we supplement this approach with the algorithmic theory of contiguous relations, which guarantees the applicability of our method for many input sums. In addition, we elaborate new techniques to optimize the underlying key task of our method to compute rational solutions of parameterized linear recurrences.</div></div>","PeriodicalId":50031,"journal":{"name":"Journal of Symbolic Computation","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Creative telescoping for hypergeometric double sums\",\"authors\":\"Peter Paule ,&nbsp;Carsten Schneider\",\"doi\":\"10.1016/j.jsc.2024.102394\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We present efficient methods for calculating linear recurrences of hypergeometric double sums and, more generally, of multiple sums. In particular, we supplement this approach with the algorithmic theory of contiguous relations, which guarantees the applicability of our method for many input sums. In addition, we elaborate new techniques to optimize the underlying key task of our method to compute rational solutions of parameterized linear recurrences.</div></div>\",\"PeriodicalId\":50031,\"journal\":{\"name\":\"Journal of Symbolic Computation\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Symbolic Computation\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0747717124000981\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Symbolic Computation","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0747717124000981","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了计算超几何双和线性递归的有效方法,更广泛地说,我们提出了计算多重和线性递归的有效方法。特别是,我们用连续关系的算法理论对这一方法进行了补充,从而保证了我们的方法适用于许多输入和。此外,我们还阐述了新技术,以优化我们计算参数化线性递归有理解方法的基本关键任务。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Creative telescoping for hypergeometric double sums
We present efficient methods for calculating linear recurrences of hypergeometric double sums and, more generally, of multiple sums. In particular, we supplement this approach with the algorithmic theory of contiguous relations, which guarantees the applicability of our method for many input sums. In addition, we elaborate new techniques to optimize the underlying key task of our method to compute rational solutions of parameterized linear recurrences.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Symbolic Computation
Journal of Symbolic Computation 工程技术-计算机:理论方法
CiteScore
2.10
自引率
14.30%
发文量
75
审稿时长
142 days
期刊介绍: An international journal, the Journal of Symbolic Computation, founded by Bruno Buchberger in 1985, is directed to mathematicians and computer scientists who have a particular interest in symbolic computation. The journal provides a forum for research in the algorithmic treatment of all types of symbolic objects: objects in formal languages (terms, formulas, programs); algebraic objects (elements in basic number domains, polynomials, residue classes, etc.); and geometrical objects. It is the explicit goal of the journal to promote the integration of symbolic computation by establishing one common avenue of communication for researchers working in the different subareas. It is also important that the algorithmic achievements of these areas should be made available to the human problem-solver in integrated software systems for symbolic computation. To help this integration, the journal publishes invited tutorial surveys as well as Applications Letters and System Descriptions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信